@tio
AFAIK, the mass of a black hole is concentrated on a point called the singularity, this is the reason for its extreme gravitational pull. So for black holes to behave the way it does, it needs a singularity. Are you suggesting that this singularity is made of dark matter ?
How does this dark matter singularity become that foggy patches shown in the NASA Hubble map ? To me, this doesn't seem to solve dark matter but just complicates things even more, lol 😂
@tio
AFAIK, general theory of relatively is proven. I don't know if singularity makes space-time curvature infinitive, that's kinda confusing because infinity a theoretical. For example, we consider sun's rays as parallel even though its not at an infinite distance from earth, so the context matters.
@tio
Because I don't know the mathematics behind all this, I'm not sure which infinity they meant. Its possible that they meant the true theoretical infinity. I've heard the quote "black holes are where god divided by zero", so there's definitely some weird mathematics going on. I think Hawking radiation disproved that statement, IDK 🤔. Its been a while since I last heard about black holes, haha. Anyway, these things are weird AF, they're too dense for us to grasp ;)
@tio
> Why is my theory making things more confusing
Singularity is more like a point, so calling it a "ball" is kinda misleading. Also, there's a lot of unknowns about dark matter, you're just making a lot of assumptions here, that stars convert matter to dark matter when they explode, that black holes convert matter to dark matter when it swallows something, etc. There's no need to make it this complicated when you can explain everything using a singularity made of normal matter, not dark.
@tio
Its not actually a hole, you know that right. It just pulls everything in to the singularity, that's just an extremely powerful gravity. And for where does this matter go, there are theories saying its like wormhole, so it spews everything it swallows somewhere else. There's also Hawking radiation, which is more widely accepted I think. It solves this information paradox, because it shows that black holes radiate away.
@tio
"It just pulls everything in to the singularity" - so you're saying it pulls stuff into that "point"? Then why are these black holes bigger, smaller, have a shape, a mass?
I'm no expert, but from what I understand, what they mean by the size is the event horizon. The event horizon is a boundary inside which light can no longer escape. So intuitively, this event horizon should expand when the mass increases because gravity increases with mass.
@tio
BTW, from what I know about black holes, they don't have a shape. I've heard about spinning black holes, but never a cube/pyramid shaped one 😁
@tio
Oh yeah, the singularity might be of any shape, we don't really know much about the inside, everything after the event horizon is just black
Most black holes I've seen in pictures and stuff have a spherical event horizon, and I think the disk you're mentioning is things orbiting these black holes that glow because of their heat, that video explained it. If the event horizon is spherical, the stuff inside should be spherical too right ? I don't know enough about gravitational fields to know
Oh yeah, the singularity might be of any shape, we don't really know much about the inside, everything after the event horizon is just black
Could also be that there is no such thing as singularity...If the event horizon is spherical, the stuff inside should be spherical too right ?
Sounds right to me but how can we know :D. If I think about my black ball theory then yes haha.@tio
> Could also be that there is no such thing as singularity...
Could be, but the mass of the black hole still has to exist somewhere inside the event horizon. The idea of a singularity is probably used to explain the extreme gravitational pull, maybe it'll have less space-time curvature if the mass is spread around VS on a densely packed point. So more space-time curvature means more gravity. I'm still not sure how scientifically proven this singularity thing is, this is my understanding.
@tio
But if you think about it, size does make a difference. If you're falling into a 10km size star with 1 tonne mass, you'll experience the same gravitational pull as a 1km size star with the same mass. But remember, gravity increases when distance between you and the star reduces, so you'll keep on accelerating as you move closer to the star. So on a 10km size star, the closest you can get to it is 5km (its radius). But on a 1km size star, you can go up to 0.5km where gravity is stronger 🙂