fosstodon.org is one of the many independent Mastodon servers you can use to participate in the fediverse.
Fosstodon is an invite only Mastodon instance that is open to those who are interested in technology; particularly free & open source software. If you wish to join, contact us for an invite.

Administered by:

Server stats:

9.8K
active users

#knime

1 post1 participant0 posts today

Hoje em dia talvez seja papo meio fora de moda, mas quando eu discutia muito sobre migrações do #Windows para #Linux, o fantasma do #Excel com macros nojentas em VBA sempre espreitava. Depois de alguns anos trabalhando com #KNIME, eu sugiro romper com o Excel de uma vez. Se não for possível abandonar certos fluxos legados, nem vale a pena migrar. Migração para Linux não pode ser encarada como "Windows de graça" ou "Windows sem os problemas do Windows". Isso é auto-enganação e dá prejuízo depois.

Estou processando alguns dados extraídos do #Notion via #KNIME (usando snippet de código #Python que consulta "bancos de dados do Notion" via API) e não consigo ignorar o consumo de recursos. O processador Xeon de >10 anos frita para processar cerca de mil linhas. São vários minutos até conseguir chegar numa tabela utilizável. E a coisa só não fica pior porque eu rodo um ambiente leve (baseado no #FVWM) e posso dedicar 8 GB de RAM apenas para o KNIME, já que o computador tem 40 GB.

More exciting #OpenMS news:
We are proud to announce the release of OpenMS 3.2, now with support for #KNIME 5.3 better export integration with #SIRIUS and improvements to our spectra viewer TOPPView. Read about all the improvements and find a link to download the installers at openms.de/news/release3.2/
#OpenScience #TeamMassSpec #opensource

openms.deOpenMSWe have just release OpenMS 3.2 click here to see changes and improvements

What if we told you that in roughly 10 mins from now, you could have a completely free #LLM running locally on your computer — with zero lines of code? 💻 Read how in this article by KNIME CloudOps Engineer SJ Porter, using #GPT4All and #KNIME Analytics Platform: brnw.ch/21wMPYv

KNIMELocal LLMs made easy: GPT4All & KNIME Analytics Platform 5.3 | KNIMEHow to harness the powerful combination of open source large language models with open source visual programming software

In our latest blog, we're happy to share a comprehensive overview of all free KNIME cheat sheets! Whether you're just starting your data science journey or a seasoned pro, we've got something for everyone, organized by learning level, data profession, and area of expertise. Check it out and boost your skills with us! 💪✨ bit.ly/4e3TiTd

KNIMEHow to Learn Data Science & AI with KNIME Cheat Sheets  | KNIMEImprove your KNIME proficiency with cheat sheets organized by learning level, profession, and specialization.

#DBSCAN is effective for detecting fraudulent transactions, because it can automatically detect clusters of normal behavior and highlight anomalies without needing detailed prior knowledge about the fraud patterns.💰🔍 Read this #KNIMEforFinance article: brnw.ch/21wLmmC

KNIMEKNIME for Finance: Fraud detection using DBSCAN | KNIMELearn how a low-code tool puts DBSCAN as an advanced data science technique into the hands of finance teams to detect credit card fraud.

With advanced tech, soccer clubs can track passes, angles, and ball speed, during matches. 👀 ⚽️ Can #ml algorithms distinguish a men's game from a women's game, and, if yes, what are the differences? Read on to find out more. brnw.ch/21wL0Qz

KNIMEIs women’s soccer different from men’s soccer? | KNIMEWe used machine learning to see if there’s a difference between how men and women play in professional soccer. Discover the surprising results.

Navigating the complexities of evolving fraud patterns can be daunting, given the enormous volume of transactions. Read our blog post that examines #quantiles as a simple and effective method for identifying potential fraudulent activities. brnw.ch/21wKY38

KNIMEKNIME for Finance: Fraud detection using quantiles | KNIMELearn to use quantiles in KNIME to easily identify fraudulent activity in huge volumes of transaction data. Download the workflow in the article to try it yourself.

Overfitting, data leakage, and incorrect use of normalization are the 3 common #ml pitfalls when splitting a dataset. Read this blog by our guest writer, Dr. Carsten Lange, a professor of Economics at Cal Poly Pomona, to learn how to avoid these and more. brnw.ch/21wKVfP

KNIME3 must-avoid pitfalls splitting datasets into train & test data | KNIMEIncrease your model’s ability to adapt properly to new data by avoiding 3 common pitfalls splitting datasets into train and test data. Learn how with examples.

Did you know that you can build GenAI functionalities into your KNIME workflows to speed up basic tasks, build basic workflows, and facilitate quicker insights? Let's look at 7 common GenAI-related use cases using KNIME to enhance efficiency and cost-effectiveness. brnw.ch/21wKPEt

KNIME7 time-saving GenAI use cases in KNIME | KNIMELooking for ideas on how to use GenAI in your data work? Look no further than our 7 simple examples with matching KNIME workflows.

Calling all high school students! Don't miss out on a chance to upskill in the world of data with KNIME's free virtual summer school this July. Join us from your own timezone in Europe or the US. Learn more: 📊👩‍💻🌐 brnw.ch/21wKHS2

KNIMEUnlocking potential: Data science for high school students | KNIMEThe gap between pre-university data science education and workforce needs is alarming. Learn how data science for high school students could help close it.

88% of organizations agree that open source is critical to innovation in data science and machine learning. Data science tools, like KNIME, that embrace openness as their core principle will always be among the first to integrate any innovation. From big data to autoML and now GenAI! Read this blog post for a dive deep into how open-source tools can sharpen your competitive edge. 🚀 💡brnw.ch/21wKGbo

KNIMEWhy choose an open source tool for data science | KNIMEFind out why global organizations and institutions actively consider and adopt open source platforms for their data science teams

💳 In this #KNIMEforFinance credit card #frauddetection series, learn how to implement a fraud detection algorithm based on outlier detection techniques. Start with this Random Forest supervised learning algorithm to help identify fraudulent transactions: brnw.ch/21wKBH1

KNIMEKNIME for Finance: Fraud detection using a supervised ML model | KNIMELearn how to predict fraud detection using random forest with KNIME, a low-code data science tool.

Na linha do que comentei no meu último toot, sempre fico pensando se deveria explorar produzir conteúdo sobre as ferramentas que uso no dia a dia. Eu sinceramente acho que a combinação entre #KNIME e Google #Sheets é fantástica, além disso, a possibilidade de jogar fragmentos de código em #R ou #Python (com ambientes devidamente configurados com o #Anaconda) facilita demais extração de dados.

Por exemplo, profissionalmente, eu mantenho múltiplos bancos de dados no #Notion. Consigo extrair informações deles usando código em Python no KNIME, fazer uma série de tratamentos e concluir carregando tudo no Google Sheets. Dali, o consumo é feito em planilhas com alguma dose de abstração (usando fórmulas) e, até mesmo, em um dashboard no Looker Studio.

Adicionalmente, o paradigma visual do KNIME ainda facilita documentar os processos, facilita a utilização por não-programadores e permite introduzir abstrações nas caixas de diálogo dos componentes, eliminando a necessidade de modificação dos fluxos de trabalho construídos.

Enfim, tudo muito sofisticado e a custo baixo (a maioria dos mortais pagaria apenas pelo Notion, o que significaria desembolsar cerca de 50 reais por mês).