fosstodon.org is one of the many independent Mastodon servers you can use to participate in the fediverse.
Fosstodon is an invite only Mastodon instance that is open to those who are interested in technology; particularly free & open source software. If you wish to join, contact us for an invite.

Administered by:

Server stats:

8.6K
active users

#scikitlearn

1 post1 participant0 posts today

Titanic + CatBoost (Первое решение, первый Jupyter Notebook)

Решение первого соревнования на kaggle титаник с помощью библиотеки от яндекса catboost. Два способа: обычная модель и второй: с перебором гиперпараметров с помощью randomizedsearch. Сравнение результатов.

habr.com/ru/articles/935540/

ХабрTitanic + CatBoost (Первое решение, первый Jupyter Notebook)#Импортируем все необходимые библиотеки import pandas as pd from catboost import CatBoostClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score...
#kaggle#titanic#ml

⚖️ Tutorial: Predictive Modeling with Imbalanced Datasets Using Scikit-learn📈

At , join Guillaume Lemaitre and Olivier Grisel for:

You’ll learn:

✅ Why imbalanced data breaks naive models

✅ How to calibrate and resample properly

✅ The performance trade-offs of real-world decision-making

A hands-on tutorial full of practical tools & insights.
📅 euroscipy.org/schedule

euroscipy.orgEuroSciPy 2025The EuroSciPy meeting is a cross-disciplinary gathering focused on the use and development of the Python language in scientific research.

Нейросеть приближается к опыту профессионального дерматолога

Наконец наступило лето, а с ним и пора отпусков. Уезжая на южные моря, не забывайте: большинство из нас имеет типичную для северянина кожу с пониженным содержанием меланина — пигмента, отвечающего за защиту от ультрафиолета. Если кожа отреагировала непонятным новообразованием, вызывающим опасения, теперь можно проконсультироваться с искусственным интеллектом. Он предварительно осмотрит кожу и посоветует, бежать ли ко врачу, за которым, конечно, всегда последнее слово. К слову, данная медицинская ИИ-технология, как и публикация, не является медицинской рекомендацией: диагноз ставит лечащий врач.

habr.com/ru/companies/leader-i

ХабрНейросеть приближается к опыту профессионального дерматологаНаконец наступило лето, а с ним и пора отпусков. Уезжая на южные моря, не забывайте: большинство из нас имеет типичную для северянина кожу с пониженным содержанием меланина — пигмента, отвечающего за...

Главное по ML/DL, часть 2: Вопрос → Краткий ответ → Разбор → Пример кода. SVD/PCA. Bias-variance. Деревья. Бустинг

У каждого наступает момент, когда нужно быстро освежить в памяти огромный пласт информации по всему ML. Причины разные - подготовка к собеседованию, начало преподавания или просто найти вдохновение. Времени мало, объема много, цели амбициозные - нужно научиться легко и быстро объяснять , но так же не лишая полноты! 💻 Обращу внимание, самый действенный способ разобраться и запомнить - это своими руками поисследовать задачу ! Это самое важное, оно происходит в секции с кодом. Поэтому попробуйте сами решить предложенную задачку и придумать свою! Будет здорово получить ваши задачи и в следующих выпусках разобрать! Мы продолжаем. Обязательно испытайте себя в предыдущей [1] части! В лес, так в лес!

habr.com/ru/articles/921190/

ХабрГлавное по ML/DL, часть 2: Вопрос → Краткий ответ → Разбор → Пример кода. SVD/PCA. Bias-variance. Деревья. БустингУ каждого наступает момент, когда нужно быстро освежить в памяти огромный пласт информации по всему ML. Причины разные - подготовка к собеседованию, начало преподавания или просто найти вдохновение....

[Перевод] Линейная регрессия в ML для самых маленьких

В мире машинного обучения есть много всего интересного, но тем, кто только начинает свой путь в этой области часто бывает многое непонятно. В этой статье мы попробуем разобраться с линейной регрессией. Линейная регрессия — это статистический метод, используемый для моделирования взаимосвязи между зависимой переменной и одной или несколькими независимыми переменными. Проще говоря, он помогает понять, как изменение одного или нескольких предикторов (независимых переменных) влияет на результат (зависимую переменную). Подумайте об этом, как о проведении прямой линии через диаграмму рассеяния точек данных, которая наилучшим образом отражает связь между этими точками.

habr.com/ru/companies/otus/art

ХабрЛинейная регрессия в ML для самых маленькихВ мире машинного обучения есть много всего интересного, но тем, кто только начинает свой путь в этой области часто бывает многое непонятно. В этой статье мы попробуем...

Фундаментальные вопросы по ML/DL, часть 1: Вопрос → Краткий ответ → Разбор → Пример кода. Линейки. Байес. Регуляризация

У каждого наступает момент, когда нужно быстро освежить в памяти огромный пласт информации по всему ML. Причины разные - подготовка к собеседованию, начало преподавания или просто найти вдохновение. Времени мало, объема много, цели амбициозные - нужно научиться легко и быстро объяснять , но так же не лишая полноты! Обращу внимание, самый действенный способ разобраться и запомнить - это своими руками поисследовать задачу ! Это самое важное, оно происходит в секции с кодом. Будет здорово получить ваши задачи и в следующих выпусках разобрать! Взглянуть на старое под новым углом

habr.com/ru/articles/918438/

ХабрФундаментальные вопросы по ML/DL, часть 1: Вопрос → Краткий ответ → Разбор → Пример кода. Линейки. Байес. РегуляризацияУ каждого наступает момент, когда нужно быстро освежить в памяти огромный пласт информации по всему ML. Причины разные - подготовка к собеседованию, начало преподавания или просто найти вдохновение....

Scikit-learn теперь умеет в пайплайны: что изменилось и как работать с библиотекой в 2025 году

Scikit-learn — это одна из основных Python-библиотек для машинного обучения. Её подключают в прикладных проектах, AutoML-системах и учебных курсах — как базовый инструмент для работы с моделями. Даже если вы давно пишете на PyTorch или CatBoost, в задачах с табличными данными, скорее всего, всё ещё вызываете fit , predict , score — через sklearn. В 2025 году в библиотеку добавили несколько важных обновлений: доработали работу с пайплайнами, подключили полную поддержку pandas API, упростили контроль за экспериментами. Мы подготовили гайд, как работать со scikit-learn в 2025 году. Новичкам он поможет собрать первую ML-задачу — с данными, моделью и метриками. А тем, кто уже использует библиотеку, — освежить знания и понять, что изменилось в новых версиях. Почитать гайд →

habr.com/ru/companies/netology

ХабрScikit-learn теперь умеет в пайплайны: что изменилось и как работать с библиотекой в 2025 годуScikit-learn — это одна из основных Python-библиотек для машинного обучения. Её подключают в прикладных проектах, AutoML-системах и учебных курсах — как базовый инструмент для работы с моделями. Даже...

Как из аналитики данных перейти в дата-сайентисты

Перевели и дополнили статью Марины Уисс, applied scientist (дата-сайентист со специализацией в прикладной статистике) в Twitch. Когда-то Марина перешла в IT из не связанной с технологиями сферы деятельности, а потом помогла с этим переходом многим людям без IT-бэкграунда. В этой статье она делится советами для дата-аналитиков, которым хотелось бы заниматься data science. А мы добавили мнение экспертов и рекомендации, актуальные для российских образовательных реалий.

habr.com/ru/companies/netology

ХабрКак из аналитики данных перейти в дата-сайентистыПеревели и дополнили статью Марины Уисс, applied scientist (дата-сайентист со специализацией в прикладной статистике) в Twitch. Когда-то Марина перешла в IT из не связанной с технологиями сферы...

Как я сделала свой первый AI-продукт с ChatGPT и капелькой любви

В этой статье я расскажу о моем опыте самостоятельного изучения основ Python и Machine Learning и создании первого проекта OneLove на базе собственной модели искусственного интеллекта (ИИ).

habr.com/ru/articles/901548/

ХабрКак я сделала свой первый AI-продукт с ChatGPT и капелькой любвиВ этой статье я расскажу о моем опыте самостоятельного изучения основ Python и Machine Learning и создании первого проекта OneLove на базе собственной модели искусственного интеллекта. Кто я и зачем...

🚗 GPUs can now accelerate vehicle intrusion detection by up to 159x compared to CPUs.
That’s not a tweak—it’s a leap.

A new study dives into how libraries like cuML outperform scikit-learn in real-time IoV security applications, all while maintaining accuracy.

Could this reshape how we secure connected vehicles at the edge?

🔗 Dive into the details: blueheadline.com/tech-news/gpu

Hi 👋
As I am learning do you have any resources to work with knn_imputer ?

I want to replace NAN values.

How do you
- Select optimized n_neighbors
- Visualize what the imputer do with plots or metrics

Any link to blog post or tutorials are welcome 🙂
Thanks

Рынок труда ML-специалистов в 2025 году: востребованные навыки и карьерные треки

В одном из недавних интервью Марк Цукерберг заявил , что к 2025 году искусственный интеллект (ИИ) сможет выполнять большинство задач Middle-разработчиков в Meta (запрещенная в РФ организация). По словам Цукерберга, ИИ уже помогает писать код и постепенно забирает на себя простые инженерные задачи, но хорошие Middle-инженеры все еще будут нужны. Правда при условии, что они будут осваивать новые востребованные технологии. С учетом влияния компании на технологическую повестку во всем мире заявление звучит серьезно: крупные игроки индустрии уже сейчас диктуют направление, в котором будет развиваться рынок труда в связи с масштабированием ИИ — это автоматизация большей части функций и появление новых. В таких условиях многим специалистам придется адаптироваться и прокачивать навыки, чтобы оставаться востребованными на рынке.

habr.com/ru/articles/882040/

ХабрРынок труда ML-специалистов в 2025 году: востребованные навыки и карьерные трекиВ одном из недавних интервью Марк Цукерберг заявил , что к 2025 году искусственный интеллект (ИИ) сможет выполнять большинство задач Middle-разработчиков в Meta (запрещенная в РФ организация). По...

#python #algorithm #scikitlearn
#machinelearning #artificialintelligence
#technology
#regression
#guide #tutorial
👉 A Comprehensive Guide to 85 Supervised Machine Learning Algorithms in Scikit-Learn — Part 1. Regressors

👉 Best Practices in Building & Training ML Models with 51 Regressors (Codes, Plots, and More)

Master all-in-one AI concepts and develop hands-on ML skills with one of the most popular and powerful libraries for ML in Python!

#exploremore 👇

medium.com/@alexzap922/a-compr