fosstodon.org is one of the many independent Mastodon servers you can use to participate in the fediverse.
Fosstodon is an invite only Mastodon instance that is open to those who are interested in technology; particularly free & open source software. If you wish to join, contact us for an invite.

Administered by:

Server stats:

8.7K
active users

#opengl

8 posts7 participants1 post today
McMartin<p>The current hobby project I'm working on basically has the theme of "OpenGL over the years" and we have already had one funny incident as I worked through my sample programs...</p><p>... in that I had already made it to 3.3 before realizing I was going to need to go back to 1.x and rewrite/extend a bunch of stuff because I'd forgotten to mention the existence of projection and modelview matrices.</p><p>I know I don't have to care about fixed-function stuff anymore, but that seems a bit excessive</p><p><a href="https://mastodon.gamedev.place/tags/opengl" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>opengl</span></a></p>
Risto A. Paju<p>Another look at Apollonian spheres, cutting out the top half and showing a few iteration steps.</p><p><a href="https://mathstodon.xyz/tags/apollonianspheres" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>apollonianspheres</span></a> <a href="https://mathstodon.xyz/tags/apolloniangasket" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>apolloniangasket</span></a> <a href="https://mathstodon.xyz/tags/iteratedfunctionsystem" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>iteratedfunctionsystem</span></a> <a href="https://mathstodon.xyz/tags/inversion" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>inversion</span></a> <a href="https://mathstodon.xyz/tags/sphereinversion" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sphereinversion</span></a> <a href="https://mathstodon.xyz/tags/geometricart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometricart</span></a> <a href="https://mathstodon.xyz/tags/3dgraphics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3dgraphics</span></a> <a href="https://mathstodon.xyz/tags/digitalsculpture" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>digitalsculpture</span></a> <a href="https://mathstodon.xyz/tags/pythoncode" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>pythoncode</span></a> <a href="https://mathstodon.xyz/tags/opengl" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>opengl</span></a> <a href="https://mathstodon.xyz/tags/algorithmicart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algorithmicart</span></a> <a href="https://mathstodon.xyz/tags/algorist" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algorist</span></a> <a href="https://mathstodon.xyz/tags/mathart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathart</span></a> <a href="https://mathstodon.xyz/tags/laskutaide" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>laskutaide</span></a> <a href="https://mathstodon.xyz/tags/ittaide" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ittaide</span></a> <a href="https://mathstodon.xyz/tags/kuavataide" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>kuavataide</span></a> <a href="https://mathstodon.xyz/tags/iterati" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>iterati</span></a></p>
ActualCannibalPanda<p>Ok, done things with a "little" more visual flare. honestly feels really cool to see this in action and that I wrote the code to make it happen.<br><a href="https://mastodon.gamedev.place/tags/indiedev" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>indiedev</span></a> <a href="https://mastodon.gamedev.place/tags/gamedev" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>gamedev</span></a> <a href="https://mastodon.gamedev.place/tags/opengl" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>opengl</span></a> <a href="https://mastodon.gamedev.place/tags/cpp" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>cpp</span></a> <a href="https://mastodon.gamedev.place/tags/paradox" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>paradox</span></a></p>
ActualCannibalPanda<p>Finally wrangled <a href="https://mastodon.gamedev.place/tags/tinygltf" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tinygltf</span></a> into loading <a href="https://mastodon.gamedev.place/tags/gltf" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>gltf</span></a> files and I managed to get things rendering. Now can worry less about added model data as code. Now to make the previous scene with gltf files instead.<br><a href="https://mastodon.gamedev.place/tags/indiedev" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>indiedev</span></a> <a href="https://mastodon.gamedev.place/tags/gamedev" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>gamedev</span></a> <a href="https://mastodon.gamedev.place/tags/opengl" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>opengl</span></a> <a href="https://mastodon.gamedev.place/tags/cpp" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>cpp</span></a></p>
ActualCannibalPanda<p>So I have a maybe new project to work on, codenamed "Paradox". Gonna be one of those games that deals with portals and space manipulation. Writing it in <a href="https://mastodon.gamedev.place/tags/cpp" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>cpp</span></a> and <a href="https://mastodon.gamedev.place/tags/opengl" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>opengl</span></a> <br><a href="https://mastodon.gamedev.place/tags/indiedev" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>indiedev</span></a> <a href="https://mastodon.gamedev.place/tags/gamedev" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>gamedev</span></a></p>
Risto A. Paju<p>Taking my lastest Apollonian gasket code from 2D to 3D was quite straightforward in principle, though there were a few kinks in the road. A particular difference between 2D and 3D gaskets is that in 3D, the inversion spheres overlap, which can create duplicate spheres.</p><p>Viewing detailed 3D structures isn't trivial either. We can only really see in 2D, as one dimension is taken up by the ray of light. Looking from outside, I wouldn't guess this blob contains over 10k spheres, so I blew it up for this clip.</p><p>The sheer amount of balls is also heavy on the drawing side, so I used my low-poly "sprites" where each ball is drawn by a geometry shader from a single input point. The low-poly aspect is quite clear in the largest spheres, but I think it's OK for this math demo.</p><p><a href="https://mathstodon.xyz/tags/apollonianspheres" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>apollonianspheres</span></a> <a href="https://mathstodon.xyz/tags/apolloniangasket" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>apolloniangasket</span></a> <a href="https://mathstodon.xyz/tags/iteratedfunctionsystem" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>iteratedfunctionsystem</span></a> <a href="https://mathstodon.xyz/tags/inversion" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>inversion</span></a> <a href="https://mathstodon.xyz/tags/sphereinversion" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sphereinversion</span></a> <a href="https://mathstodon.xyz/tags/geometricart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometricart</span></a> <a href="https://mathstodon.xyz/tags/3dgraphics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>3dgraphics</span></a> <a href="https://mathstodon.xyz/tags/digitalsculpture" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>digitalsculpture</span></a> <a href="https://mathstodon.xyz/tags/pythoncode" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>pythoncode</span></a> <a href="https://mathstodon.xyz/tags/opengl" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>opengl</span></a> <a href="https://mathstodon.xyz/tags/geometryshader" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometryshader</span></a> <a href="https://mathstodon.xyz/tags/algorithmicart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algorithmicart</span></a> <a href="https://mathstodon.xyz/tags/algorist" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algorist</span></a> <a href="https://mathstodon.xyz/tags/mathart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathart</span></a> <a href="https://mathstodon.xyz/tags/laskutaide" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>laskutaide</span></a> <a href="https://mathstodon.xyz/tags/ittaide" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ittaide</span></a> <a href="https://mathstodon.xyz/tags/kuavataide" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>kuavataide</span></a> <a href="https://mathstodon.xyz/tags/iterati" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>iterati</span></a></p>
Thorsten Suckow-Homberg<p>From <a href="https://mastodon.social/tags/Camera" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Camera</span></a>- to <a href="https://mastodon.social/tags/Clip" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Clip</span></a>-Space, to <a href="https://mastodon.social/tags/NDCs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NDCs</span></a> and z-Fighting - the latest article in my series examining the mathematical underpinnings of the <a href="https://mastodon.social/tags/OpenGL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OpenGL</span></a> rendering pipeline focuses on projection matrices.</p><p><a href="https://thorsten.suckow-homberg.de/docs/articles/computer-graphics/from-camera-to-clip-space-derivation-of-the-projection-matrices" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">thorsten.suckow-homberg.de/doc</span><span class="invisible">s/articles/computer-graphics/from-camera-to-clip-space-derivation-of-the-projection-matrices</span></a></p><p><a href="https://mastodon.social/tags/LinearAlgebra" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LinearAlgebra</span></a> <a href="https://mastodon.social/tags/Math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Math</span></a> <a href="https://mastodon.social/tags/gamedev" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>gamedev</span></a> <a href="https://mastodon.social/tags/indiedev" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>indiedev</span></a> <a href="https://mastodon.social/tags/indiegames" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>indiegames</span></a></p>
Risto A. Paju<p>As I keep studying the Apollonian gasket, I've now implemented the inversion approach on the CPU for finding the circle centres and radii. Now I can generate these arrays of eyes much faster, as the inversion is easier to parallelize. It's so fast that the bottleneck is now in the drawing stage.</p><p>The colours denote a kind of family tree of inversions: the 4 initial circles each have their own colour, and their inversion images retain the colour. The outer circle is not shown here, but its descendants show the colour that's distinct from the other 3.</p><p>I still needed something other than inversions for setting up the initial quartet, but I wanted find my own solution instead of relying on Descartes' theorem. The theorem actually comes in two parts: Rene's original theorem only deals with the radii, while the complex quadratic formula for finding the circle positions was only developed in the late 1990s.</p><p>Well, I found an alternative solution to the latter part, and it reduces to a pair of linear equations. It isn't particularly fast to compute, but I think it's easier to understand — it's basically junior high school math. In fact, it seems so basic that I can't be the first one to discover it.</p><p><a href="https://mathstodon.xyz/tags/eyecandy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>eyecandy</span></a> <a href="https://mathstodon.xyz/tags/apolloniancircles" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>apolloniancircles</span></a> <a href="https://mathstodon.xyz/tags/apolloniangasket" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>apolloniangasket</span></a> <a href="https://mathstodon.xyz/tags/iteratedfunctionsystem" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>iteratedfunctionsystem</span></a> <a href="https://mathstodon.xyz/tags/inversion" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>inversion</span></a> <a href="https://mathstodon.xyz/tags/circleinversion" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>circleinversion</span></a> <a href="https://mathstodon.xyz/tags/geometricart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometricart</span></a> <a href="https://mathstodon.xyz/tags/fractal" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fractal</span></a> <a href="https://mathstodon.xyz/tags/fractalart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fractalart</span></a> <a href="https://mathstodon.xyz/tags/pythoncode" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>pythoncode</span></a> <a href="https://mathstodon.xyz/tags/opengl" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>opengl</span></a> <a href="https://mathstodon.xyz/tags/algorithmicart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algorithmicart</span></a> <a href="https://mathstodon.xyz/tags/algorist" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algorist</span></a> <a href="https://mathstodon.xyz/tags/mathart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathart</span></a> <a href="https://mathstodon.xyz/tags/laskutaide" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>laskutaide</span></a> <a href="https://mathstodon.xyz/tags/ittaide" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ittaide</span></a> <a href="https://mathstodon.xyz/tags/kuavataide" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>kuavataide</span></a> <a href="https://mathstodon.xyz/tags/iterati" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>iterati</span></a></p>
Risto A. Paju<p>2D circle inversion fractals on the spherical surface. This was a fun offshoot of my recent Apollonian endeavours, again using the Riemann sphere mapping to go from 3D to 2D for the iterations.</p><p>The inversion circle centres come from a tetrakis hexahedron and a triakis icosahedron, so the circles form approximations of a truncated octahedron and a truncated dodecahedron.</p><p><a href="https://mathstodon.xyz/tags/apolloniancircles" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>apolloniancircles</span></a> <a href="https://mathstodon.xyz/tags/apolloniangasket" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>apolloniangasket</span></a> <a href="https://mathstodon.xyz/tags/inversion" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>inversion</span></a> <a href="https://mathstodon.xyz/tags/circleinversion" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>circleinversion</span></a> <a href="https://mathstodon.xyz/tags/riemannsphere" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>riemannsphere</span></a> <a href="https://mathstodon.xyz/tags/geometricart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometricart</span></a> <a href="https://mathstodon.xyz/tags/fractal" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fractal</span></a> <a href="https://mathstodon.xyz/tags/fractalart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fractalart</span></a> <a href="https://mathstodon.xyz/tags/pythoncode" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>pythoncode</span></a> <a href="https://mathstodon.xyz/tags/opengl" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>opengl</span></a> <a href="https://mathstodon.xyz/tags/algorithmicart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algorithmicart</span></a> <a href="https://mathstodon.xyz/tags/algorist" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algorist</span></a> <a href="https://mathstodon.xyz/tags/mathart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathart</span></a> <a href="https://mathstodon.xyz/tags/laskutaide" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>laskutaide</span></a> <a href="https://mathstodon.xyz/tags/ittaide" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ittaide</span></a> <a href="https://mathstodon.xyz/tags/kuavataide" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>kuavataide</span></a> <a href="https://mathstodon.xyz/tags/iterati" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>iterati</span></a></p>
Risto A. Paju<p>In the last post, I noted how the incremental iterates of the Apollonian gasket look like the output of an iterated function system. There's indeed such an IFS, and it's a system of circle inversions. It's how I've made a lot of fractal art over the years, but I've usually started directly with the inversion circles/spheres themselves.</p><p>Now that I've worked with the "classical" approach to the Apollonian gasket, I thought I'd translate a given Apollonian setup to the language of inversions. It was a fun little exercise and the math was surprisingly simple, just playing with vectors and solving linear equations. I then used my old inversion shaders from the late 2010s to show the results.</p><p>The first part shows it all together: the 3 largest coloured circles are the initial Apollonian circles, and the 4 inversion circles can be seen in the darkest grey in the background. (The initial Apollonian circles also include a 4th one, but here we can only see it as the perimeter of the coloured area.)</p><p>The second part uses a pointillist process, and it shows essentially the incremental iterates of the previous post. The inversion circles are not seen, but the Apollonian circles are all there as the empty space.</p><p><a href="https://mathstodon.xyz/tags/apolloniancircles" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>apolloniancircles</span></a> <a href="https://mathstodon.xyz/tags/apolloniangasket" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>apolloniangasket</span></a> <a href="https://mathstodon.xyz/tags/iteratedfunctionsystem" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>iteratedfunctionsystem</span></a> <a href="https://mathstodon.xyz/tags/inversion" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>inversion</span></a> <a href="https://mathstodon.xyz/tags/circleinversion" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>circleinversion</span></a> <a href="https://mathstodon.xyz/tags/geometricart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometricart</span></a> <a href="https://mathstodon.xyz/tags/fractal" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fractal</span></a> <a href="https://mathstodon.xyz/tags/fractalart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fractalart</span></a> <a href="https://mathstodon.xyz/tags/pythoncode" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>pythoncode</span></a> <a href="https://mathstodon.xyz/tags/opengl" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>opengl</span></a> <a href="https://mathstodon.xyz/tags/algorithmicart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algorithmicart</span></a> <a href="https://mathstodon.xyz/tags/algorist" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algorist</span></a> <a href="https://mathstodon.xyz/tags/mathart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathart</span></a> <a href="https://mathstodon.xyz/tags/laskutaide" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>laskutaide</span></a> <a href="https://mathstodon.xyz/tags/ittaide" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ittaide</span></a> <a href="https://mathstodon.xyz/tags/kuavataide" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>kuavataide</span></a> <a href="https://mathstodon.xyz/tags/iterati" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>iterati</span></a></p>
TugaTech 🖥️<p>Steam recebe nova atualização com melhorias de desempenho e novidades na interface<br>🔗&nbsp;<a href="https://tugatech.com.pt/t71665-steam-recebe-nova-atualizacao-com-melhorias-de-desempenho-e-novidades-na-interface" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">tugatech.com.pt/t71665-steam-r</span><span class="invisible">ecebe-nova-atualizacao-com-melhorias-de-desempenho-e-novidades-na-interface</span></a></p><p><a href="https://masto.pt/tags/acessibilidade" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>acessibilidade</span></a> <a href="https://masto.pt/tags/chrome" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>chrome</span></a> <a href="https://masto.pt/tags/cpu" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>cpu</span></a> <a href="https://masto.pt/tags/desktop" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>desktop</span></a> <a href="https://masto.pt/tags/dlss" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dlss</span></a> <a href="https://masto.pt/tags/game" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>game</span></a> <a href="https://masto.pt/tags/google" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>google</span></a> <a href="https://masto.pt/tags/linux" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>linux</span></a> <a href="https://masto.pt/tags/macos" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>macos</span></a> <a href="https://masto.pt/tags/monitor" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>monitor</span></a> <a href="https://masto.pt/tags/opengl" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>opengl</span></a> <a href="https://masto.pt/tags/steam" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>steam</span></a> <a href="https://masto.pt/tags/Valve" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Valve</span></a> <a href="https://masto.pt/tags/vulkan" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>vulkan</span></a> <a href="https://masto.pt/tags/windows" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>windows</span></a>&nbsp;</p>
Risto A. Paju<p>The Apollonian gasket is a bit peculiar as an iterated system. The Nth stage of circles isn't generated solely by generation N-1, but all of the preceding generations. Alternatively, one might say that each circle also regenerates itself for the next level. Either way, it doesn't work like a typical IFS.</p><p>As I wonder how it all works, I'm showing you a couple of different views of the Apollonian iteration. The first part is just the regular progression. The second is the same, but only the newest generation of circles is shown. It looks a bit like a regular IFS as the iteration level increases.</p><p>The last two parts show a kind of graph view of the process, with the same structure seen through 2 different cameras. The balls and sticks are scaled in proportion to the circles they represent, and each child is connected to its parents. To avoid messing up the view completely, I've left out the outer circle that encompasses all the others, so a lot of circles show only 2 parents.</p><p><a href="https://mathstodon.xyz/tags/apolloniancircles" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>apolloniancircles</span></a> <a href="https://mathstodon.xyz/tags/apolloniangasket" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>apolloniangasket</span></a> <a href="https://mathstodon.xyz/tags/iteratedfunctionsystem" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>iteratedfunctionsystem</span></a> <a href="https://mathstodon.xyz/tags/geometricart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometricart</span></a> <a href="https://mathstodon.xyz/tags/fractal" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fractal</span></a> <a href="https://mathstodon.xyz/tags/fractalart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fractalart</span></a> <a href="https://mathstodon.xyz/tags/pythoncode" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>pythoncode</span></a> <a href="https://mathstodon.xyz/tags/opengl" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>opengl</span></a> <a href="https://mathstodon.xyz/tags/algorithmicart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algorithmicart</span></a> <a href="https://mathstodon.xyz/tags/algorist" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algorist</span></a> <a href="https://mathstodon.xyz/tags/mathart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathart</span></a> <a href="https://mathstodon.xyz/tags/laskutaide" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>laskutaide</span></a> <a href="https://mathstodon.xyz/tags/ittaide" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ittaide</span></a> <a href="https://mathstodon.xyz/tags/kuavataide" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>kuavataide</span></a> <a href="https://mathstodon.xyz/tags/iterati" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>iterati</span></a></p>
PitCrew<p>ICYMI: NVIDIA GeForce NOW Blackwell RTX upgrade arrives September 10 with more games</p><p><a href="https://mastodon.social/tags/GeForce" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GeForce</span></a> <a href="https://mastodon.social/tags/GeForceNOW" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GeForceNOW</span></a> <a href="https://mastodon.social/tags/Linux" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Linux</span></a> <a href="https://mastodon.social/tags/LinuxGaming" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LinuxGaming</span></a> <a href="https://mastodon.social/tags/NVIDIA" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NVIDIA</span></a> <a href="https://mastodon.social/tags/OpenGL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OpenGL</span></a> <a href="https://mastodon.social/tags/PCGaming" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PCGaming</span></a> <a href="https://mastodon.social/tags/Vulkan" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Vulkan</span></a> </p><p><a href="https://www.gamingonlinux.com/2025/09/geforce-nows-blackwell-rtx-upgrade-arrives-september-10-and-more-games-arrive-soon" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">gamingonlinux.com/2025/09/gefo</span><span class="invisible">rce-nows-blackwell-rtx-upgrade-arrives-september-10-and-more-games-arrive-soon</span></a></p>
Risto A. Paju<p>The set of polyhedra that can be converted into Apollonian gaskets via sphere-plane mapping is quite limited. The face polygons should be regular, the edge midpoints should all lie on the same sphere, and the vertices should be 3-fold. There are some Platonic solids that work, and I've showed all of these earlier. It turns out that Archimedean solids with 3-fold vertices work too. So here's a truncated octahedron, also showing a progressive view of the gasket iteration.</p><p><a href="https://mathstodon.xyz/tags/apolloniancircles" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>apolloniancircles</span></a> <a href="https://mathstodon.xyz/tags/apolloniangasket" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>apolloniangasket</span></a> <a href="https://mathstodon.xyz/tags/riemannsphere" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>riemannsphere</span></a> <a href="https://mathstodon.xyz/tags/archimedeansolid" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>archimedeansolid</span></a> <a href="https://mathstodon.xyz/tags/truncatedoctahedron" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>truncatedoctahedron</span></a> <a href="https://mathstodon.xyz/tags/geometricart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometricart</span></a> <a href="https://mathstodon.xyz/tags/fractal" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fractal</span></a> <a href="https://mathstodon.xyz/tags/fractalart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fractalart</span></a> <a href="https://mathstodon.xyz/tags/pythoncode" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>pythoncode</span></a> <a href="https://mathstodon.xyz/tags/opengl" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>opengl</span></a> <a href="https://mathstodon.xyz/tags/algorithmicart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algorithmicart</span></a> <a href="https://mathstodon.xyz/tags/algorist" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algorist</span></a> <a href="https://mathstodon.xyz/tags/mathart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathart</span></a> <a href="https://mathstodon.xyz/tags/laskutaide" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>laskutaide</span></a> <a href="https://mathstodon.xyz/tags/ittaide" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ittaide</span></a> <a href="https://mathstodon.xyz/tags/kuavataide" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>kuavataide</span></a> <a href="https://mathstodon.xyz/tags/iterati" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>iterati</span></a></p>
HGPU group<p>CrossTL: A Universal Programming Language Translator with Unified Intermediate Representation</p><p><a href="https://mast.hpc.social/tags/CUDA" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CUDA</span></a> <a href="https://mast.hpc.social/tags/Vulkan" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Vulkan</span></a> <a href="https://mast.hpc.social/tags/HLSL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>HLSL</span></a> <a href="https://mast.hpc.social/tags/GLSL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GLSL</span></a> <a href="https://mast.hpc.social/tags/HIP" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>HIP</span></a> <a href="https://mast.hpc.social/tags/DirectX" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DirectX</span></a> <a href="https://mast.hpc.social/tags/OpenGL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OpenGL</span></a> <a href="https://mast.hpc.social/tags/Compilers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Compilers</span></a> <a href="https://mast.hpc.social/tags/Package" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Package</span></a></p><p><a href="https://hgpu.org/?p=30171" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">hgpu.org/?p=30171</span><span class="invisible"></span></a></p>
GripNews<p>🌕 : "以 Clojure 開發太空飛行模擬器",<br>➤ : "Clojure 實現複雜太空模擬的技術深度解析",<br>✤ <a href="https://www.wedesoft.de/software/2025/09/05/clojure-game/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">wedesoft.de/software/2025/09/0</span><span class="invisible">5/clojure-game/</span></a><br>: "作者 Jan Wedekind 分享了他使用 Clojure 開發太空飛行模擬器的歷程。他從 2017 年受到 Orbiter 2016 的啟發,歷經 C 和 GNU Guile 的原型開發後,最終選擇 Clojure 作為主要開發語言。文章詳細闡述了使用 Clojure 處理 3D 渲染、大氣層散射、行星表面紋理、物理碰撞以及著色器編碼等技術細節,並列出了開發過程中使用的各項軟體依賴。藉由 Clojure 的不可變性與安全並行特性,作者成功建構出一個複雜的模擬器,並透過優化儲存方式解決了大量檔案的管理問題。",<br>+ : "Clojure 也能做這麼複雜的遊戲開發?真是令人驚訝!作者的技術細節分享非常寶貴。",<br>+ : "對大氣層渲染的技術細節很感興趣,Brunet<br>#: "軟體開發 <a href="https://mastodon.social/tags/%E9%81%8A%E6%88%B2%E6%A8%A1%E6%93%AC" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>遊戲模擬</span></a> <a href="https://mastodon.social/tags/Clojure" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Clojure</span></a> <a href="https://mastodon.social/tags/OpenGL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OpenGL</span></a> <a href="https://mastodon.social/tags/%E7%89%A9%E7%90%86%E6%A8%A1%E6%93%AC" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>物理模擬</span></a>",</p>
charliemac<p>I'm planning on streaming / rubberducking <a href="https://mastodon.social/tags/McCLIM" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>McCLIM</span></a> things a little earlier that usual, in about an hour. 10:30 CDT (15:30 UTC).</p><p>Focusing on a transformation bug in my INDEXED-PATTERN rendering </p><p><a href="https://www.twitch.tv/endparen" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="">twitch.tv/endparen</span><span class="invisible"></span></a></p><p><a href="https://mastodon.social/tags/CommonLisp" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CommonLisp</span></a> <a href="https://mastodon.social/tags/OpenGL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OpenGL</span></a></p>
Krutonium://<p>I love that <a href="https://social.treehouse.systems/tags/Zink" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Zink</span></a> is good fast enough now to run <a href="https://social.treehouse.systems/tags/Minecraft" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Minecraft</span></a> with <a href="https://social.treehouse.systems/tags/Shaders" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Shaders</span></a> and not have a noticeably different experience to using <a href="https://social.treehouse.systems/tags/OpenGL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OpenGL</span></a> directly (except, actually, fewer stutters!)</p>
PitCrew<p>ICYMI: NVIDIA 580.82.07 Driver Released for Linux (Latest Recommended)</p><p><a href="https://mastodon.social/tags/CUDA" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CUDA</span></a> <a href="https://mastodon.social/tags/GeForce" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GeForce</span></a> <a href="https://mastodon.social/tags/Linux" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Linux</span></a> <a href="https://mastodon.social/tags/LinuxGaming" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LinuxGaming</span></a> <a href="https://mastodon.social/tags/NVIDIA" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NVIDIA</span></a> <a href="https://mastodon.social/tags/OpenGL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OpenGL</span></a> <a href="https://mastodon.social/tags/PCGaming" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PCGaming</span></a> <a href="https://mastodon.social/tags/Vulkan" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Vulkan</span></a></p><p><a href="https://www.gamingonlinux.com/2025/09/nvidia-580-82-07-driver-released-for-linux-the-new-recommended-driver" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">gamingonlinux.com/2025/09/nvid</span><span class="invisible">ia-580-82-07-driver-released-for-linux-the-new-recommended-driver</span></a></p>
charliemac<p>Making feel-good forward progress on rendering <a href="https://mastodon.social/tags/McCLIM" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>McCLIM</span></a> INDEX-PATTERNs using DRAW-RECTANGLES but at the cost of some new tech debt. Next week I must follow through on my promise to myself to pay it down.</p><p><a href="https://mastodon.social/tags/McCLIM" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>McCLIM</span></a> <a href="https://mastodon.social/tags/CommonLisp" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CommonLisp</span></a> <a href="https://mastodon.social/tags/OpenGL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OpenGL</span></a></p>