fosstodon.org is one of the many independent Mastodon servers you can use to participate in the fediverse.
Fosstodon is an invite only Mastodon instance that is open to those who are interested in technology; particularly free & open source software. If you wish to join, contact us for an invite.

Administered by:

Server stats:

8.6K
active users

#multivariate

0 posts0 participants0 posts today
💧🌏 Greg Cocks<p>Interpreting Hydrogeochemical Interactions And Controlling Processes In Groundwater Using Advanced Statistical Techniques In The Southeast Asian Megacity - Dhaka, Bangladesh<br>--<br><a href="https://doi.org/10.1016/j.clwat.2025.100084" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">doi.org/10.1016/j.clwat.2025.1</span><span class="invisible">00084</span></a> &lt;-- shared paper<br>--<br><a href="https://techhub.social/tags/GIS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GIS</span></a> <a href="https://techhub.social/tags/spatial" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>spatial</span></a> <a href="https://techhub.social/tags/mapping" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mapping</span></a> <a href="https://techhub.social/tags/spatialanalysis" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>spatialanalysis</span></a> <a href="https://techhub.social/tags/spatiotemporal" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>spatiotemporal</span></a> <a href="https://techhub.social/tags/Hydrogeochemistry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Hydrogeochemistry</span></a> <a href="https://techhub.social/tags/Groundwater" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Groundwater</span></a> <a href="https://techhub.social/tags/Quality" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Quality</span></a> <a href="https://techhub.social/tags/Statistics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Statistics</span></a> <a href="https://techhub.social/tags/geostatistics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geostatistics</span></a> <a href="https://techhub.social/tags/Analysis" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Analysis</span></a> <a href="https://techhub.social/tags/Irrigation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Irrigation</span></a> <a href="https://techhub.social/tags/suitability" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>suitability</span></a> <a href="https://techhub.social/tags/water" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>water</span></a> <a href="https://techhub.social/tags/hydrology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>hydrology</span></a> <a href="https://techhub.social/tags/waterresources" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>waterresources</span></a> <a href="https://techhub.social/tags/statistics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>statistics</span></a> geostatistics <a href="https://techhub.social/tags/waterquality" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>waterquality</span></a> <a href="https://techhub.social/tags/model" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>model</span></a> <a href="https://techhub.social/tags/modeling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>modeling</span></a> <a href="https://techhub.social/tags/potable" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>potable</span></a> <a href="https://techhub.social/tags/drinkingwater" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>drinkingwater</span></a> <a href="https://techhub.social/tags/urbanisation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>urbanisation</span></a> <a href="https://techhub.social/tags/city" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>city</span></a> <a href="https://techhub.social/tags/growth" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>growth</span></a> <a href="https://techhub.social/tags/population" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>population</span></a> <a href="https://techhub.social/tags/stress" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>stress</span></a> <a href="https://techhub.social/tags/planning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>planning</span></a> <a href="https://techhub.social/tags/management" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>management</span></a> <a href="https://techhub.social/tags/industrial" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>industrial</span></a> <a href="https://techhub.social/tags/residential" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>residential</span></a> <a href="https://techhub.social/tags/geochemical" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geochemical</span></a> <a href="https://techhub.social/tags/testing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>testing</span></a> # Dhaka <a href="https://techhub.social/tags/Bangladesh" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Bangladesh</span></a> <a href="https://techhub.social/tags/pumping" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>pumping</span></a> <a href="https://techhub.social/tags/overpumping" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>overpumping</span></a> <a href="https://techhub.social/tags/drinking" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>drinking</span></a> <a href="https://techhub.social/tags/irrigation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>irrigation</span></a> <a href="https://techhub.social/tags/regional" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>regional</span></a> <a href="https://techhub.social/tags/WQI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>WQI</span></a> <a href="https://techhub.social/tags/multivariate" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>multivariate</span></a> <a href="https://techhub.social/tags/monitoring" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>monitoring</span></a> <a href="https://techhub.social/tags/contamination" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>contamination</span></a> <a href="https://techhub.social/tags/pollution" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>pollution</span></a> <a href="https://techhub.social/tags/assessment" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>assessment</span></a> <a href="https://techhub.social/tags/watersecurity" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>watersecurity</span></a></p>
Spatialists<p>Tile and glyph map experiments: David O’Sullivan explores innovative visualizations of complex <a href="https://mapstodon.space/tags/multivariate" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>multivariate</span></a> data on <a href="https://mapstodon.space/tags/maps" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>maps</span></a>, using a case study with three variables. His article showcases creative <a href="https://mapstodon.space/tags/mapping" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mapping</span></a> techniques pushing the boundaries of traditional GIS <a href="https://mapstodon.space/tags/visualization" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>visualization</span></a>. <br><a href="https://spatialists.ch/posts/2025/05-07-tile-and-glyph-map-experiments/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">spatialists.ch/posts/2025/05-0</span><span class="invisible">7-tile-and-glyph-map-experiments/</span></a> <a href="https://mapstodon.space/tags/GIS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GIS</span></a> <a href="https://mapstodon.space/tags/GISchat" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GISchat</span></a> <a href="https://mapstodon.space/tags/geospatial" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geospatial</span></a> <a href="https://mapstodon.space/tags/SwissGIS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SwissGIS</span></a></p>
JMLR<p>'Extremal graphical modeling with latent variables via convex optimization', by Sebastian Engelke, Armeen Taeb.</p><p><a href="http://jmlr.org/papers/v26/24-0472.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">http://</span><span class="ellipsis">jmlr.org/papers/v26/24-0472.ht</span><span class="invisible">ml</span></a> <br> <br><a href="https://sigmoid.social/tags/multivariate" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>multivariate</span></a> <a href="https://sigmoid.social/tags/graphical" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphical</span></a> <a href="https://sigmoid.social/tags/sparse" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>sparse</span></a></p>
💧🌏 Greg Cocks<p>Compound Weather And Climate Events In 2024<br>--<br><a href="https://doi.org/10.1038/s43017-025-00657-y" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">doi.org/10.1038/s43017-025-006</span><span class="invisible">57-y</span></a> &lt;-- shared technical article<br>--<br><a href="https://techhub.social/tags/GIS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GIS</span></a> <a href="https://techhub.social/tags/spatial" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>spatial</span></a> <a href="https://techhub.social/tags/mapping" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mapping</span></a> <a href="https://techhub.social/tags/global" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>global</span></a> <a href="https://techhub.social/tags/extremeweather" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>extremeweather</span></a> <a href="https://techhub.social/tags/climate" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>climate</span></a> <a href="https://techhub.social/tags/climatechange" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>climatechange</span></a> <a href="https://techhub.social/tags/highimpact" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>highimpact</span></a> <a href="https://techhub.social/tags/compoundevents" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>compoundevents</span></a> <a href="https://techhub.social/tags/spatiallycompounding" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>spatiallycompounding</span></a> <a href="https://techhub.social/tags/water" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>water</span></a> <a href="https://techhub.social/tags/hydrology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>hydrology</span></a> <a href="https://techhub.social/tags/SouthernAfrica" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SouthernAfrica</span></a> <a href="https://techhub.social/tags/HurricaneHelene" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>HurricaneHelene</span></a> <a href="https://techhub.social/tags/heatwave" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>heatwave</span></a> <a href="https://techhub.social/tags/drought" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>drought</span></a> <a href="https://techhub.social/tags/risk" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>risk</span></a> <a href="https://techhub.social/tags/hazard" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>hazard</span></a> <a href="https://techhub.social/tags/flood" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>flood</span></a> <a href="https://techhub.social/tags/flooding" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>flooding</span></a> <a href="https://techhub.social/tags/marine" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>marine</span></a> <a href="https://techhub.social/tags/ocean" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ocean</span></a> <a href="https://techhub.social/tags/ecosystems" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ecosystems</span></a> <a href="https://techhub.social/tags/humanimpacts" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>humanimpacts</span></a> <a href="https://techhub.social/tags/naturaldisaster" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>naturaldisaster</span></a> <a href="https://techhub.social/tags/naturalhazards" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>naturalhazards</span></a> <a href="https://techhub.social/tags/infrastructure" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>infrastructure</span></a> <a href="https://techhub.social/tags/costs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>costs</span></a> <a href="https://techhub.social/tags/economics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>economics</span></a> <a href="https://techhub.social/tags/society" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>society</span></a> <a href="https://techhub.social/tags/USA" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>USA</span></a> <a href="https://techhub.social/tags/Nepal" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Nepal</span></a> <a href="https://techhub.social/tags/China" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>China</span></a> <a href="https://techhub.social/tags/Australia" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Australia</span></a> <a href="https://techhub.social/tags/soil" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>soil</span></a> <a href="https://techhub.social/tags/rainfall" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>rainfall</span></a> <a href="https://techhub.social/tags/precipitation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>precipitation</span></a> <a href="https://techhub.social/tags/storms" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>storms</span></a> <a href="https://techhub.social/tags/UK" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>UK</span></a> <a href="https://techhub.social/tags/damage" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>damage</span></a> <a href="https://techhub.social/tags/spatialanalysis" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>spatialanalysis</span></a> <a href="https://techhub.social/tags/spatiotemporal" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>spatiotemporal</span></a> <a href="https://techhub.social/tags/multivariate" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>multivariate</span></a> <a href="https://techhub.social/tags/monitoring" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>monitoring</span></a> <a href="https://techhub.social/tags/remotesensing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>remotesensing</span></a> <a href="https://techhub.social/tags/earthobservation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>earthobservation</span></a> <a href="https://techhub.social/tags/dynamics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dynamics</span></a> <a href="https://techhub.social/tags/mitigation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mitigation</span></a> <a href="https://techhub.social/tags/planning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>planning</span></a> <a href="https://techhub.social/tags/watersecurity" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>watersecurity</span></a> <a href="https://techhub.social/tags/foodsecurity" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>foodsecurity</span></a> <a href="https://techhub.social/tags/agriculture" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>agriculture</span></a> <a href="https://techhub.social/tags/crops" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>crops</span></a> <a href="https://techhub.social/tags/impacts" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>impacts</span></a></p>
Miki :rstats:<p><a href="https://techhub.social/tags/30DayChartChallenge" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>30DayChartChallenge</span></a> Día 15: Complicated Relationships! 🐧↔️🐧</p><p>Hoy, una matriz de scatter plots con ggpairs para explorar las relaciones entre medidas corporales (Long. Pico, Long. Aleta, Masa Corporal) en los pingüinos de Palmer. ¡Perfecto para el prompt "Complicated"! <a href="https://techhub.social/tags/RelationshipsWeek" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RelationshipsWeek</span></a> <a href="https://techhub.social/tags/Animals" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Animals</span></a></p><p>La matriz lo enseña todo:<br>* Diagonal: Distribución de cada medida (densidad).<br>* Abajo: Scatter plots de cada par de medidas (coloreado por Especie).<br>* Arriba: ¡La correlación $ entre ellas!</p><p>Se ven las fuertes relaciones positivas (más grande = aleta más larga) y cómo las especies (Adelie, Chinstrap, Gentoo) forman clusters distintos en este espacio de rasgos. ¡Una forma densa de ver muchas relaciones a la vez!</p><p>🛠 <a href="https://techhub.social/tags/rstats" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>rstats</span></a> <a href="https://techhub.social/tags/ggplot2" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ggplot2</span></a> <a href="https://techhub.social/tags/GGally" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GGally</span></a> | Data: <a href="https://techhub.social/tags/palmerpenguins" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>palmerpenguins</span></a> | Theme: <a href="https://techhub.social/tags/theme_week3_animals" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>theme_week3_animals</span></a><br>📂 Código/Viz: <a href="https://t.ly/GATJi" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">t.ly/GATJi</span><span class="invisible"></span></a></p><p><a href="https://techhub.social/tags/Day15" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Day15</span></a> <a href="https://techhub.social/tags/Complicated" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Complicated</span></a> <a href="https://techhub.social/tags/dataviz" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dataviz</span></a> <a href="https://techhub.social/tags/DataVisualization" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataVisualization</span></a> <a href="https://techhub.social/tags/Penguins" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Penguins</span></a> <a href="https://techhub.social/tags/Ecology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Ecology</span></a> <a href="https://techhub.social/tags/Morphometrics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Morphometrics</span></a> <a href="https://techhub.social/tags/Multivariate" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Multivariate</span></a> <a href="https://techhub.social/tags/ggplot2" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ggplot2</span></a> <a href="https://techhub.social/tags/RStats" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RStats</span></a></p>
JMLR<p>'Bayesian Structural Learning with Parametric Marginals for Count Data: An Application to Microbiota Systems', by Veronica Vinciotti, Pariya Behrouzi, Reza Mohammadi.</p><p><a href="http://jmlr.org/papers/v25/23-0056.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">http://</span><span class="ellipsis">jmlr.org/papers/v25/23-0056.ht</span><span class="invisible">ml</span></a> <br> <br><a href="https://sigmoid.social/tags/microbiome" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>microbiome</span></a> <a href="https://sigmoid.social/tags/multivariate" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>multivariate</span></a> <a href="https://sigmoid.social/tags/microbiota" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>microbiota</span></a></p>
Gregor Kos<p>I have asked students in my <a href="https://mstdn.ca/tags/machinelearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>machinelearning</span></a> and statistical modelling course to present 5 (self-selected) application papers demonstrating the use of experimental chemistry data for <a href="https://mstdn.ca/tags/multivariate" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>multivariate</span></a> models. The focus of the short presentation was on model quality parameters. 3 / 5 papers did not have any. Hopefully, this was not a representative sample. But there is work to be done! <a href="https://mstdn.ca/tags/academia" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>academia</span></a> <a href="https://mstdn.ca/tags/statistics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>statistics</span></a> <a href="https://mstdn.ca/tags/teaching" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>teaching</span></a> <a href="https://mstdn.ca/tags/highered" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>highered</span></a></p>
JMLR<p>'Scalable High-Dimensional Multivariate Linear Regression for Feature-Distributed Data', by Shuo-Chieh Huang, Ruey S. Tsay.</p><p><a href="http://jmlr.org/papers/v25/23-0882.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">http://</span><span class="ellipsis">jmlr.org/papers/v25/23-0882.ht</span><span class="invisible">ml</span></a> <br> <br><a href="https://sigmoid.social/tags/feature" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>feature</span></a> <a href="https://sigmoid.social/tags/regression" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>regression</span></a> <a href="https://sigmoid.social/tags/multivariate" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>multivariate</span></a></p>
JMLR<p>'Permuted and Unlinked Monotone Regression in R^d: an approach based on mixture modeling and optimal transport', by Martin Slawski, Bodhisattva Sen.</p><p><a href="http://jmlr.org/papers/v25/22-0058.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">http://</span><span class="ellipsis">jmlr.org/papers/v25/22-0058.ht</span><span class="invisible">ml</span></a> <br> <br><a href="https://sigmoid.social/tags/permuted" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>permuted</span></a> <a href="https://sigmoid.social/tags/unlinked" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>unlinked</span></a> <a href="https://sigmoid.social/tags/multivariate" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>multivariate</span></a></p>
JMLR<p>'More Efficient Estimation of Multivariate Additive Models Based on Tensor Decomposition and Penalization', by Xu Liu, Heng Lian, Jian Huang.</p><p><a href="http://jmlr.org/papers/v25/22-0578.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">http://</span><span class="ellipsis">jmlr.org/papers/v25/22-0578.ht</span><span class="invisible">ml</span></a> <br> <br><a href="https://sigmoid.social/tags/multivariate" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>multivariate</span></a> <a href="https://sigmoid.social/tags/tensor" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tensor</span></a> <a href="https://sigmoid.social/tags/nonparametric" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>nonparametric</span></a></p>
JMLR<p>'Flexible Bayesian Product Mixture Models for Vector Autoregressions', by Suprateek Kundu, Joshua Lukemire.</p><p><a href="http://jmlr.org/papers/v25/22-0717.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">http://</span><span class="ellipsis">jmlr.org/papers/v25/22-0717.ht</span><span class="invisible">ml</span></a> <br> <br><a href="https://sigmoid.social/tags/mixture" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mixture</span></a> <a href="https://sigmoid.social/tags/multivariate" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>multivariate</span></a> <a href="https://sigmoid.social/tags/mixtures" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mixtures</span></a></p>
JMLR<p>'Spatial meshing for general Bayesian multivariate models', by Michele Peruzzi, David B. Dunson.</p><p><a href="http://jmlr.org/papers/v25/22-0083.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">http://</span><span class="ellipsis">jmlr.org/papers/v25/22-0083.ht</span><span class="invisible">ml</span></a> <br> <br><a href="https://sigmoid.social/tags/multivariate" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>multivariate</span></a> <a href="https://sigmoid.social/tags/spatial" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>spatial</span></a> <a href="https://sigmoid.social/tags/bayesian" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>bayesian</span></a></p>
JMLR<p>'Learning Non-Gaussian Graphical Models via Hessian Scores and Triangular Transport', by Ricardo Baptista, Youssef Marzouk, Rebecca Morrison, Olivier Zahm.</p><p><a href="http://jmlr.org/papers/v25/21-0022.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">http://</span><span class="ellipsis">jmlr.org/papers/v25/21-0022.ht</span><span class="invisible">ml</span></a> <br> <br><a href="https://sigmoid.social/tags/hessian" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>hessian</span></a> <a href="https://sigmoid.social/tags/probabilistic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>probabilistic</span></a> <a href="https://sigmoid.social/tags/multivariate" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>multivariate</span></a></p>
JMLR<p>'Dimension Reduction and MARS', by Yu Liu LIU, Degui Li, Yingcun Xia.</p><p><a href="http://jmlr.org/papers/v24/22-1422.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">http://</span><span class="ellipsis">jmlr.org/papers/v24/22-1422.ht</span><span class="invisible">ml</span></a> <br> <br><a href="https://sigmoid.social/tags/multivariate" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>multivariate</span></a> <a href="https://sigmoid.social/tags/splines" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>splines</span></a> <a href="https://sigmoid.social/tags/spline" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>spline</span></a></p>
acemaxx<p>US <a href="https://econtwitter.net/tags/inflation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>inflation</span></a> - <a href="https://econtwitter.net/tags/multivariate" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>multivariate</span></a> Core Trend <a href="https://econtwitter.net/tags/MCT" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MCT</span></a> <a href="https://econtwitter.net/tags/inflation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>inflation</span></a> decreased to 2.9% in June from 3.2% (a downward revision) in May, chart @newyorkfed <a href="https://tinyurl.com/bden9swy" rel="nofollow noopener" target="_blank"><span class="invisible">https://</span><span class="">tinyurl.com/bden9swy</span><span class="invisible"></span></a></p>
Published papers at TMLR<p>Modelling sequential branching dynamics with a multivariate branching Gaussian process</p><p>Elvijs Sarkans, Sumon Ahmed, Magnus Rattray, Alexis Boukouvalas</p><p>Action editor: Patrick Flaherty.</p><p><a href="https://openreview.net/forum?id=9KoBOlstTq" rel="nofollow noopener" target="_blank"><span class="invisible">https://</span><span class="ellipsis">openreview.net/forum?id=9KoBOl</span><span class="invisible">stTq</span></a></p><p><a href="https://sigmoid.social/tags/branching" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>branching</span></a> <a href="https://sigmoid.social/tags/branch" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>branch</span></a> <a href="https://sigmoid.social/tags/multivariate" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>multivariate</span></a></p>
Breaking Taps<p>Anyone know of software that will help optimize multi-variate experiments? Something sample-efficient since these are manually generated test results.</p><p>I found <a href="https://github.com/yunshengtian/AutoOED/" rel="nofollow noopener" target="_blank"><span class="invisible">https://</span><span class="ellipsis">github.com/yunshengtian/AutoOE</span><span class="invisible">D/</span></a> which looks great, but having a hard time getting it working at the moment</p><p><a href="https://universeodon.com/tags/software" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>software</span></a> <a href="https://universeodon.com/tags/optimization" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>optimization</span></a> <a href="https://universeodon.com/tags/multivariate" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>multivariate</span></a> <a href="https://universeodon.com/tags/designofexperiments" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>designofexperiments</span></a> <a href="https://universeodon.com/tags/ExperimentalDesign" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ExperimentalDesign</span></a></p>
Bert van der Veen<p>Our article <span class="h-card"><a href="https://ecoevo.social/@MethodsEcolEvol" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>MethodsEcolEvol</span></a></span> on incorporating predictors in a model-based ordination is now out!</p><p>We develop a new implementation for constrained ordination in the <a href="https://ecoevo.social/tags/GLLVM" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GLLVM</span></a> R-package, but also develop a new kind of ordination. </p><p>Concurrent ordination combines the best of unconstrained and constrained ordination. It leaves the latent variables unconstrained but uses predictors to inform the ordination anyway! </p><p><a href="https://besjournals.onlinelibrary.wiley.com/doi/10.1111/2041-210X.14035?utm_source=google&amp;utm_medium=paidsearch&amp;utm_campaign=R3MR425&amp;utm_content=LifeSciences" rel="nofollow noopener" target="_blank"><span class="invisible">https://</span><span class="ellipsis">besjournals.onlinelibrary.wile</span><span class="invisible">y.com/doi/10.1111/2041-210X.14035?utm_source=google&amp;utm_medium=paidsearch&amp;utm_campaign=R3MR425&amp;utm_content=LifeSciences</span></a></p><p><a href="https://ecoevo.social/tags/ordination" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ordination</span></a> <a href="https://ecoevo.social/tags/StatisticalEcology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>StatisticalEcology</span></a> <a href="https://ecoevo.social/tags/multivariate" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>multivariate</span></a></p>
Clelia SiramiJob ad: postdoc computer science - Wageningen Netherlands
Physalia-courses<p>Another fantastic course delivered by <span class="h-card"><a href="https://mastodon.social/@gavinsimpson" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>gavinsimpson</span></a></span> ! We hope you enjoy this week of virtual learning with us👏</p><p>🗞️Want to join the 2023 course? Have a look at the following: <a href="https://physalia-courses.org/courses-workshops/" rel="nofollow noopener" target="_blank"><span class="invisible">https://</span><span class="ellipsis">physalia-courses.org/courses-w</span><span class="invisible">orkshops/</span></a></p><p><a href="https://mas.to/tags/rstats" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>rstats</span></a> <a href="https://mas.to/tags/Multivariate" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Multivariate</span></a> <a href="https://mas.to/tags/data" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>data</span></a> <a href="https://mas.to/tags/analysis" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>analysis</span></a> <a href="https://mas.to/tags/veganR" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>veganR</span></a> <a href="https://mas.to/tags/DataScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataScience</span></a></p>