fosstodon.org is one of the many independent Mastodon servers you can use to participate in the fediverse.
Fosstodon is an invite only Mastodon instance that is open to those who are interested in technology; particularly free & open source software. If you wish to join, contact us for an invite.

Administered by:

Server stats:

9.8K
active users

#fluidsAsArt

2 posts2 participants0 posts today
Nicole Sharp<p><strong>Ghostly Waterfalls</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/knight-1.jpg" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/knight-4.jpg" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/knight-5.jpg" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/knight-6.jpg" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/knight-7.jpg" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/knight-9.jpg" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/knight-10.jpg" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/knight-2.jpg" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p></p> <p>Photographer Jonathan Knight likes capturing waterfalls about 45 minutes after sunset, creating ghostly images that emphasize the shape of the cascading water. The dim surroundings and misty shapes remind me of old daguerreotypes. See more of his images on <a href="https://www.jonathanknight.net/" rel="nofollow noopener noreferrer" target="_blank">his website</a> and his <a href="https://www.instagram.com/jknightphoto" rel="nofollow noopener noreferrer" target="_blank">Instagram</a>. (Image credit: <a href="https://www.jonathanknight.net/" rel="nofollow noopener noreferrer" target="_blank">J. Knight</a>; via <a href="https://www.thisiscolossal.com/2025/04/jonathan-knight-waterfalls/?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Colossal</a>)</p><p></p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/waterfalls/" target="_blank">#waterfalls</a></p>
Nicole Sharp<p><strong>Drops on the Edge</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/part_drop1.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/part_drop2.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/part_drop3.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p></p> <p>Drops impacting a dry hydrophilic surface flatten into a film. Drops that impact a wet film throw up a crown-shaped splash. But what happens when a drop hits the edge of a wet surface? That’s the situation explored in this video, where blue-dyed drops interact with a red-dyed film. From every angle, the impact is complex — sending up partial crown splashes, generating capillary waves that shift the contact line, and chaotically mixing the drop and film’s liquids. (Video and image credit: <a href="https://doi.org/10.1103/APS.DFD.2024.GFM.V2691061" rel="nofollow noopener noreferrer" target="_blank">A. Sauret et al.</a>)</p><p></p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/2024gofm/" target="_blank">#2024gofm</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/crown-splash/" target="_blank">#crownSplash</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/droplet-impact/" target="_blank">#dropletImpact</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/droplets/" target="_blank">#droplets</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/wetting/" target="_blank">#wetting</a></p>
Nicole Sharp<p><strong>“Dispersion”</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/disp2.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/disp3.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/disp4.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/disp5.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/disp6.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/disp1.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p></p> <p>In “Dispersion,” particles spread under the influence of an unseen fluid. Like Roman de Giuli’s work, filmmaker Susi Sie creates macro images that look like ice floes, deserts, and river deltas viewed from above. This similarity of patterns at both large and small scales is a specialty of fluid physics. Just as artists use it to mimic larger flows, scientists use it to study planet-scale problems in the lab. (Video and image credit: <a href="https://www.susisie.de/" rel="nofollow noopener noreferrer" target="_blank">S. Sie et al.</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/dispersion/" target="_blank">#dispersion</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/granular-flow/" target="_blank">#granularFlow</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/granular-material/" target="_blank">#granularMaterial</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/particulates/" target="_blank">#particulates</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/reynolds-similarity/" target="_blank">#reynoldsSimilarity</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Arctic Melt</strong></p><p>Temperatures in the Arctic are rising faster than elsewhere, triggering more and more melting. Photographer Scott Portelli captured a melting ice shelf protruding into the ocean in this aerial image. Across the top of the frozen landscape, streams and rivers cut through the ice, leading to waterfalls that flood the nearby ocean with freshwater. This meltwater will do more than raise ocean levels; it changes temperature and salinity in these regions, disrupting the convection that keeps our planet healthy. (Image credit: <a href="https://oceanographicmagazine.com/opa-winner/ocean-conservation-impact-photographer-of-the-year-2024-scopor3/" rel="nofollow noopener noreferrer" target="_blank">S. Portelli/OPOTY</a>; via <a href="https://www.thisiscolossal.com/2024/08/ocean-photographer-of-the-year-2024/" rel="nofollow noopener noreferrer" target="_blank">Colossal</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/climate-change/" target="_blank">#climateChange</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/convection/" target="_blank">#convection</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/geophysics/" target="_blank">#geophysics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/melting/" target="_blank">#melting</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Reclaiming the Land</strong></p><p>Lava floods human-made infrastructure on Iceland’s Reykjanes peninsula in this aerial image from photographer Ael Kermarec. Protecting roads and buildings from lava flows is a formidable challenge, but it’s one that researchers are tackling. But the larger and faster the lava flow, the harder infrastructure is to protect. Sometimes our best efforts are simply overwhelmed by nature’s power. (Image credit: <a href="https://www.worldnaturephotographyawards.com/winners-2025" rel="nofollow noopener noreferrer" target="_blank">A. Kermarec/WNPA</a>; via <a href="https://www.thisiscolossal.com/2025/03/2025-world-nature-photography-awards/?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Colossal</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/geophysics/" target="_blank">#geophysics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/gravity-current/" target="_blank">#gravityCurrent</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/lava/" target="_blank">#lava</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/viscous-flow/" target="_blank">#viscousFlow</a></p>
Nicole Sharp<p><strong>“Visions in Ice”</strong></p><p>The glittering blue interior of an ice cave sparkles in this award-winning image by photographer Yasmin Namini. The cave is underneath Iceland’s Vatnajokull Glacier. Notice the deep scallops carved into the lower wall. This shape is common in melting and dissolution processes. It is unavoidable for flat surfaces exposed to a melting/dissolving flow. (Image credit: <a href="https://www.worldnaturephotographyawards.com/winners-2025" rel="nofollow noopener noreferrer" target="_blank">Y. Namini</a>/WNPA; via <a href="https://www.thisiscolossal.com/2025/03/2025-world-nature-photography-awards/?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Colossal</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/erosion/" target="_blank">#erosion</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/geology/" target="_blank">#geology</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/geophysics/" target="_blank">#geophysics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/glacier/" target="_blank">#glacier</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/ice/" target="_blank">#ice</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/instability/" target="_blank">#instability</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/melting/" target="_blank">#melting</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>A Stellar Look at NGC 602</strong></p><p>The young star cluster NGC 602 sits some 200,000 light years away in the Small Magellanic Cloud. Seen here in near- and mid-infrared, the cluster is a glowing cradle of star forming conditions similar to the early universe. A large nebula, made up of multicolored dust and gas, surrounds the star cluster. Its dusty finger-like pillars could be an example of Rayleigh-Taylor instabilities or plumes shaped by energetic stellar jets. (Image credit: <a href="https://esawebb.org/images/weic2425a/" rel="nofollow noopener noreferrer" target="_blank">NASA/ESA/CSA/JWST</a>; via <a href="https://www.thisiscolossal.com/2024/10/ngc-602-image/?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Colossal</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/astronomy/" target="_blank">#astronomy</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/instability/" target="_blank">#instability</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/nebula/" target="_blank">#nebula</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/stellar-evolution/" target="_blank">#stellarEvolution</a></p>
Nicole Sharp<p><strong>“The Ballet of Colors”</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/colbal1.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/colbal2.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/colbal3.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/colbal4.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/colbal5.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/colbal6.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p></p> <p>Thomas Blanchard’s short film “The Ballet of Colors” plunges viewers into a warm spectrum of roiling oil and paint. Fluid dynamically speaking, it could be subtitled “the Plateau-Rayleigh instability” thanks to its focus on retracting paint ruptures and ligaments breaking into droplets. Unlike some other videos of this genre, Blanchard uses a high-speed camera here, filming the action at 1,000 frames per second, and the result is smooth, crisply focused, and absolutely delectable. (Video and image credit: <a href="https://thomas-blanchard.com/" rel="nofollow noopener noreferrer" target="_blank">T. Blanchard et al.</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/droplets/" target="_blank">#droplets</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/instability/" target="_blank">#instability</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/plateau-rayleigh-instability/" target="_blank">#PlateauRayleighInstability</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>“Skimming the Waves”</strong></p><p>Common terns are gregarious sea birds that cruise low over the water to fish. When they spot prey, they will dip down to grab a fish from the surface, or they will fold their wings to plunge-dive to depths of half a meter. Compared to gannets and boobies, these are slower, shallower dives that involve less impact risk. Presumably the birds’ choice of dive height reflects the typical swim depth of their preferred fish. (Image credit: <a href="https://www.nhm.ac.uk/wpy/gallery/2024-skimming-the-waves?tags=ed.current" rel="nofollow noopener noreferrer" target="_blank">N. Kovo/WPOTY</a>; via <a href="https://www.thisiscolossal.com/2024/09/wildlife-photo-contest-2024/" rel="nofollow noopener noreferrer" target="_blank">Colossal</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/biology/" target="_blank">#biology</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/birds/" target="_blank">#birds</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/plunge-diving/" target="_blank">#plungeDiving</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Strandbeest Evolution</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/sbeest1.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/sbeest2.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/sbeest3.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p></p> <p>Theo Jansen’s Strandbeests are massive, wind-powered kinetic sculptures designed to roam Dutch beaches. Conceived in the late 1980s as a way to kick up sand that would replenish nearby dunes, the beests have grown into a decades-long obsession for the artist and his followers. This Veritasium video charts the development and evolution of the Strandbeest from its original concept through Jansen’s increasingly self-sufficient versions. I found the leg linkage of the Strandbeest especially fascinating. How neat to find a relatively simply proportion of linkages capable of turning a small crank’s motion into a stable walking gait. Anyone else feel like building a miniature Strandbeest now? (Video and image credit: Veritasium)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/erosion/" target="_blank">#erosion</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/wind-energy/" target="_blank">#windEnergy</a></p>
Nicole Sharp<p><strong>“Trinity”</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/trinity1.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/trinity2.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/trinity3.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/trinity4.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/trinity5.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/trinity6.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p></p><p>Inspired by the film&nbsp;<em>Oppenheimer</em>, artist Thomas Blanchard created “Trinity,” a short film imagining a nuclear explosion with macro-scale fluid motion. There’s clever video editing and compositing in this video, but no CGI. Instead, Blanchard filmed fire, sparklers, alcohol inks, pigments and more up close and in stunning detail. As always, his work is a reminder of the amazing possibilities of analog-based art. (Video and image credit: <a href="https://thomas-blanchard.com/" rel="nofollow noopener noreferrer" target="_blank">T. Blanchard</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/droplets/" target="_blank">#droplets</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/marangoni-effect/" target="_blank">#marangoniEffect</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/turbulence/" target="_blank">#turbulence</a></p>
Nicole Sharp<p><strong>“One”</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/one1.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/one2.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/one3.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/one4.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/one5.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/one6.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p></p> <p>A 4-minute, unedited one-shot video of colorful paint sliding down a sheet? Yes, please.</p><p>Beautiful visuals aside, there are some really interesting physics involved here. It’s unclear whether the there’s any change in the speed at which paint gets deposited at the top of the incline over the course of the video, yet we see huge changes in the visual patterns. This happens, in part, because the layer of paint is getting thicker and heavier over time, changing the dynamics of its slide under gravity. There may even be some shear-thinning going on, given that paint is usually non-Newtonian. I can imagine some connections to landslides, avalanches, and other gravity currents with non-Newtonian fluids. (Video and image credit: <a href="https://www.terracollage.com/" rel="nofollow noopener noreferrer" target="_blank">R. De Giuli</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/gravity-current/" target="_blank">#gravityCurrent</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/non-newtonian-fluids/" target="_blank">#nonNewtonianFluids</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/shear-thinning/" target="_blank">#shearThinning</a></p>
Nicole Sharp<p><strong>“My Own Galaxy”</strong></p><p>Fungal spores sketch out minute air currents in this shortlisted photograph by Avilash Ghosh. The moth atop a mushroom appears to admire the celestial view. In the largely still air near the forest floor, mushrooms use evaporation and buoyancy to generate air flows capable of lifting their spores high enough to catch a stray breeze. (Image credit: <a href="https://www.cupoty.com/insects-shortlist-6" rel="nofollow noopener noreferrer" target="_blank">A. Ghosh/CUPOTY</a>; via <a href="https://www.thisiscolossal.com/2024/10/cupoty-6-shortlist/?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Colossal</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/biology/" target="_blank">#biology</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/buoyancy/" target="_blank">#buoyancy</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/evaporation/" target="_blank">#evaporation</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/moths/" target="_blank">#moths</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/mushrooms/" target="_blank">#mushrooms</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>“Lively”</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/lively1.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/lively2.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/lively3.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/lively4.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/lively5.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/lively6.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p></p> <p>In “Lively,” filmmaker Christopher Dormoy zooms in on ice. He shows ice forming and melting, capturing <a href="https://fyfluiddynamics.com/2024/04/bubbles-encased-in-ice/" rel="nofollow noopener noreferrer" target="_blank">bubbles and their trails</a>, as well as the subtle flows that go on in and around the ice. By introducing blue dye, he highlights some of the internal flows we would otherwise miss. (Video and image credit: <a href="http://www.dormoy.ca/" rel="nofollow noopener noreferrer" target="_blank">C. Dormoy</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/freezing/" target="_blank">#freezing</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/ice/" target="_blank">#ice</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/ice-formation/" target="_blank">#iceFormation</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/melting/" target="_blank">#melting</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>“Waterfall Wonder”</strong></p><p>The Semeru volcano rises in the background of this photo of Java’s Tumpak Sewa waterfall by Joan de la Malla. Rain that falls on the volcano slides down its flank and wanders through the jungle on its way to the spectacular 120-meter-high waterfall. From the clouds wreathing the mountain through the jungle’s drifting fogs to the mists of the falls, this portrait highlights the many forms water takes on its journey. (Image credit: <a href="https://www.nhm.ac.uk/wpy/gallery/2024-waterfall-wonder?tags=ed.current" rel="nofollow noopener noreferrer" target="_blank">J. de la Malla/WPOTY</a>; via <a href="https://www.thisiscolossal.com/2024/09/wildlife-photo-contest-2024/" rel="nofollow noopener noreferrer" target="_blank">Colossal</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/waterfalls/" target="_blank">#waterfalls</a></p>
Nicole Sharp<p><strong>Instabilities in Competition</strong></p><p>When two liquid jets collide, they form a thin liquid sheet with a thicker rim. That rim breaks into threads and then droplets, forming a well-known fishbone pattern as the Plateau-Rayleigh instability breaks up the flow. This poster shows a twist on that set-up: here, the two colliding jets vary slightly in their velocities. That variability adds a second instability to the system, visible as the wavy pattern on the central liquid sheet. The sheet’s rim still breaks apart in the usual fishbone pattern, but the growing waves in the center of the sheet eventually that structure apart as well. (Image credit: <a href="https://doi.org/10.1103/APS.DFD.2024.GFM.P2692828" rel="nofollow noopener noreferrer" target="_blank">S. Dighe et al.</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/2024gofm/" target="_blank">#2024gofm</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fishbone/" target="_blank">#fishbone</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/instability/" target="_blank">#instability</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/jet-collision/" target="_blank">#jetCollision</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/plateau-rayleigh-instability/" target="_blank">#PlateauRayleighInstability</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Bubbling Up</strong></p><p>By volume, Lake Baikal is the world’s largest lake, holding over 20% of the planet’s fresh water. It’s also a major carbon sink, holding large amounts of methane. That’s the gas trapped in the frozen bubbles seen here. Baikal’s ice is exceptionally clear, making long trails of frozen bubbles visible during the winter. (Image credit: <a href="https://www.flickr.com/photos/23502952@N03/" rel="nofollow noopener noreferrer" target="_blank">K. Makeeva</a>; via <a href="https://apod.nasa.gov/apod/ap241229.html" rel="nofollow noopener noreferrer" target="_blank">APOD</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/bubble/" target="_blank">#bubble</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/ice/" target="_blank">#ice</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Within a Drop</strong></p><p>In this macro video, various chemical reactions swirl inside a single dangling droplet. Despite its tiny size, quite a lot can go on in a drop like this. Both the injection of chemicals and the chemical reactions themselves can cause the flows we see here. Surface tension variations and capillary waves on the exterior of the drop can play a role, too. Just because a flow is tiny doesn’t mean it’s simple. (Video and image credit: B. Pleyer; via <a href="https://www.nikonsmallworld.com/galleries/2024-small-world-in-motion-competition" rel="nofollow noopener noreferrer" target="_blank">Nikon Small World in Motion</a>)</p> Chemical reactions swirl within a single, hanging droplet. <p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/chemistry/" target="_blank">#chemistry</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/droplets/" target="_blank">#droplets</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/marangoni-effect/" target="_blank">#marangoniEffect</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/surface-tension/" target="_blank">#surfaceTension</a></p>
Nicole Sharp<p><strong>Strata of Starlings</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/cooper-1.jpg" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/cooper-10.jpg" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/cooper-7.jpg" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/cooper-2.jpg" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/cooper-4.jpg" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/cooper-9.jpg" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/cooper-8.jpg" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/cooper-5.jpg" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/cooper-11.jpg" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/cooper-3.jpg" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p></p> <p>Starlings come together in groups of up to thousands of birds for the protection of numbers. These flocks form spellbinding, undulating masses known as murmurations, where the movement of individual starlings sends waves spreading from neighbor to neighbor through the group. One bird’s effort to dodge a hawk triggers a giant, spreading ripple in the flock. </p><p>To capture the flowing nature of the murmuration, photographer and scientist Kathryn Cooper layers multiple images of the starlings atop one another. The birds themselves become <a href="https://en.wikipedia.org/wiki/Streamlines%2C_streaklines%2C_and_pathlines" rel="nofollow noopener noreferrer" target="_blank">pathlines</a> marking the murmuration’s motion. The final images are surprisingly varied in form. Some flocks resemble a downpour of rain; others the dangling branches of a tree. (Image credit: <a href="https://kathryncooperwildlife.com/" rel="nofollow noopener noreferrer" target="_blank">K. Cooper</a>; via <a href="https://www.thisiscolossal.com/2024/11/kathryn-cooper-murmurations/?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Colossal</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/active-matter/" target="_blank">#activeMatter</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/biology/" target="_blank">#biology</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/birds/" target="_blank">#birds</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/collective-motion/" target="_blank">#collectiveMotion</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flocking/" target="_blank">#flocking</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/murmuration/" target="_blank">#murmuration</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>“Flowing Kelp”</strong></p><p>This CUPOTY-shortlisted photo by Sigfrido Zimmerman shows <a href="https://en.wikipedia.org/wiki/Macrocystis" rel="nofollow noopener noreferrer" target="_blank">giant kelp</a> drifting in the current. At the base of each blade is an inflated bladder that helps keep the algae buoyant. The blades themselves are furrowed on their surface, with patterns reminiscent of sand ripples. Though giant kelp can grow to as large as 60 meters, the species lives in constant flux, pushed and pulled by the currents that run along its length. (Image credit: S. Zimmerman/CUPOTY; via <a href="https://www.thisiscolossal.com/2024/10/cupoty-6-shortlist" rel="nofollow noopener noreferrer" target="_blank">Colossal</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/biology/" target="_blank">#biology</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/kelp/" target="_blank">#kelp</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>