fosstodon.org is one of the many independent Mastodon servers you can use to participate in the fediverse.
Fosstodon is an invite only Mastodon instance that is open to those who are interested in technology; particularly free & open source software. If you wish to join, contact us for an invite.

Administered by:

Server stats:

9.9K
active users

#brms

0 posts0 participants0 posts today
Dr Mircea Zloteanu 🌼🐝<p><a href="https://mastodon.social/tags/statstab" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>statstab</span></a> #328 How to Assess Task Reliability using Bayesian Mixed Models<br>by @Dom_Makowski</p><p>Thoughts: Nice walkthrough using {brms}, with code, data gen, and plots.</p><p><a href="https://mastodon.social/tags/r" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>r</span></a> <a href="https://mastodon.social/tags/bayesian" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>bayesian</span></a> <a href="https://mastodon.social/tags/mixedeffects" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mixedeffects</span></a> <a href="https://mastodon.social/tags/reliability" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>reliability</span></a> <a href="https://mastodon.social/tags/brms" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>brms</span></a></p><p><a href="https://realitybending.github.io/post/2024-03-18-signaltonoisemixed/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">realitybending.github.io/post/</span><span class="invisible">2024-03-18-signaltonoisemixed/</span></a></p>
Dr Mircea Zloteanu 🌼🐝<p><a href="https://mastodon.social/tags/statstab" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>statstab</span></a> #299 The role of "max_treedepth" in No-U-Turn?</p><p>Thoughts: Once you start using more complex models you will run into issues at some point; this is one; good solution guide.</p><p><a href="https://mastodon.social/tags/brms" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>brms</span></a> <a href="https://mastodon.social/tags/bayesian" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>bayesian</span></a> <a href="https://mastodon.social/tags/modeling" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>modeling</span></a> <a href="https://mastodon.social/tags/stats" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>stats</span></a> <a href="https://mastodon.social/tags/issues" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>issues</span></a> <a href="https://mastodon.social/tags/solutions" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>solutions</span></a> <a href="https://mastodon.social/tags/stan" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>stan</span></a> <a href="https://mastodon.social/tags/forum" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>forum</span></a></p><p><a href="https://discourse.mc-stan.org/t/the-role-of-max-treedepth-in-no-u-turn/24155" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">discourse.mc-stan.org/t/the-ro</span><span class="invisible">le-of-max-treedepth-in-no-u-turn/24155</span></a></p>
Pierre de Villemereuil<p>Incidentally, our companion <a href="https://ecoevo.social/tags/rstats" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>rstats</span></a> Reacnorm package is now live in CRAN, so it's as easy as `install.packages("Reacnorm")` and `vignette("TutoReacnorm")` to access our nice tutorial on analyse reaction norms using the <a href="https://ecoevo.social/tags/brms" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>brms</span></a> and Reacnorm package.</p><p><a href="https://cran.r-project.org/package=Reacnorm" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">cran.r-project.org/package=Rea</span><span class="invisible">cnorm</span></a></p>
Christian Röver<p>A very interesting workshop on "Hierarchical models in preclinical research" finished today in Göttingen. This was a joint undertaking of the IBS-DR working groups "Non-clinical statistics" and "Bayes Methods", and included an extensive Tutorial on <a href="https://mastodon.social/tags/brms" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>brms</span></a> by Sebastian Weber and Lukas Widmer. Some of the material is available on the meeting website:</p><p><a href="https://www.biometrische-gesellschaft.de/arbeitsgruppen/bayes-methodik/workshops/2024-goettingen.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">biometrische-gesellschaft.de/a</span><span class="invisible">rbeitsgruppen/bayes-methodik/workshops/2024-goettingen.html</span></a></p><p><a href="https://mastodon.social/tags/Bayesian" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Bayesian</span></a> <a href="https://mastodon.social/tags/rstats" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>rstats</span></a> <a href="https://mastodon.social/tags/MedStatGoe" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MedStatGoe</span></a></p>
Dr Mircea Zloteanu 🌼🐝<p><a href="https://mastodon.social/tags/statstab" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>statstab</span></a> #228 Applied Modelling in Drug Development - Setting priors in {brms}</p><p>Thoughts: Part of a larger book, useful bit for understanding how to set priors &amp; check them for bayesian models &amp; meta-analyses</p><p><a href="https://mastodon.social/tags/stats" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>stats</span></a> <a href="https://mastodon.social/tags/brms" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>brms</span></a> <a href="https://mastodon.social/tags/priors" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>priors</span></a> <a href="https://mastodon.social/tags/metaanalysis" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>metaanalysis</span></a> <a href="https://mastodon.social/tags/bayesian" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>bayesian</span></a> <a href="https://mastodon.social/tags/r" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>r</span></a> <a href="https://mastodon.social/tags/bayes" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>bayes</span></a> <a href="https://mastodon.social/tags/drugs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>drugs</span></a> <a href="https://mastodon.social/tags/clinicaltrials" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>clinicaltrials</span></a> </p><p><a href="https://opensource.nibr.com/bamdd/src/01c_priors.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">opensource.nibr.com/bamdd/src/</span><span class="invisible">01c_priors.html</span></a></p>
Dr Mircea Zloteanu 🌼🐝<p><a href="https://mastodon.social/tags/statstab" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>statstab</span></a> #227 Parameterization of Response Distributions in {brms}</p><p>Thoughts: If you use <a href="https://mastodon.social/tags/brms" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>brms</span></a> and can read mathematical notation (who can't, right?), this page will be useful.</p><p><a href="https://mastodon.social/tags/r" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>r</span></a> <a href="https://mastodon.social/tags/bayes" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>bayes</span></a> <a href="https://mastodon.social/tags/models" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>models</span></a> <a href="https://mastodon.social/tags/distributions" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>distributions</span></a> <a href="https://mastodon.social/tags/likelihood" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>likelihood</span></a> <a href="https://mastodon.social/tags/stats" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>stats</span></a></p><p><a href="https://cran.r-project.org/web/packages/brms/vignettes/brms_families.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">cran.r-project.org/web/package</span><span class="invisible">s/brms/vignettes/brms_families.html</span></a></p>
Dr Mircea Zloteanu 🌼🐝<p><a href="https://mastodon.social/tags/statstab" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>statstab</span></a> #221 <a href="https://mastodon.social/tags/brms" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>brms</span></a> posterior_epred() vs posterior_predict()</p><p>Thoughts: When starting off with bayesian mixed models you'll run across this issue. Here's one of the best forum posts on it.</p><p><a href="https://mastodon.social/tags/bayesian" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>bayesian</span></a> <a href="https://mastodon.social/tags/mixedeffects" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mixedeffects</span></a> <a href="https://mastodon.social/tags/models" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>models</span></a> <a href="https://mastodon.social/tags/posterior" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>posterior</span></a> <a href="https://mastodon.social/tags/effects" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>effects</span></a> <a href="https://mastodon.social/tags/prediction" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>prediction</span></a></p><p><a href="https://discourse.mc-stan.org/t/confusion-on-difference-between-posterior-epred-and-posterior-predict-in-a-mixed-effects-modelling-context/28813" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">discourse.mc-stan.org/t/confus</span><span class="invisible">ion-on-difference-between-posterior-epred-and-posterior-predict-in-a-mixed-effects-modelling-context/28813</span></a></p>
Dr Mircea Zloteanu 🌼🐝<p><a href="https://mastodon.social/tags/stats" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>stats</span></a> Q about sum scores: Is it better to analyse sum scores (4 items, range 4-20) using a cumulative model or a ordered beta? And how can i compare fit bw the two? just loo? </p><p><a href="https://mastodon.social/tags/brms" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>brms</span></a> <a href="https://mastodon.social/tags/orderedbetareg" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>orderedbetareg</span></a> <a href="https://mastodon.social/tags/sumscores" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>sumscores</span></a></p>
Ross Gayler<p>Online free book: Introduction to Bayesian Data Analysis for Cognitive Science</p><p><a href="https://bayes.club/@ShravanVasishth/113330289055047281" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">bayes.club/@ShravanVasishth/11</span><span class="invisible">3330289055047281</span></a></p><p><a href="https://aus.social/tags/bayes" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>bayes</span></a> <a href="https://aus.social/tags/Rstats" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Rstats</span></a> <a href="https://aus.social/tags/STAN" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>STAN</span></a> <a href="https://aus.social/tags/brms" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>brms</span></a> <a href="https://aus.social/tags/OpenAccess" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>OpenAccess</span></a> <a href="https://aus.social/tags/OA" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>OA</span></a> <a href="https://aus.social/tags/CognitiveScience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CognitiveScience</span></a> <a href="https://aus.social/tags/CogSci" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CogSci</span></a> <span class="h-card" translate="no"><a href="https://a.gup.pe/u/cogsci" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>cogsci</span></a></span></p>
Dr Mircea Zloteanu 🌼🐝<p><a href="https://mastodon.social/tags/statstab" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>statstab</span></a> #201 Missing Data and DAGs and other stuff</p><p>Thoughts: <a href="https://mastodon.social/tags/missingdata" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>missingdata</span></a> is difficult to handle, but maybe if we build theoretical models using <a href="https://mastodon.social/tags/DAGs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DAGs</span></a> will help. Also measurement error. </p><p><a href="https://mastodon.social/tags/brms" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>brms</span></a> <a href="https://mastodon.social/tags/rethinking" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>rethinking</span></a> <a href="https://mastodon.social/tags/r" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>r</span></a> <a href="https://mastodon.social/tags/stats" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>stats</span></a> <a href="https://mastodon.social/tags/mice" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mice</span></a> <a href="https://mastodon.social/tags/measurement" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>measurement</span></a> <a href="https://mastodon.social/tags/error" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>error</span></a></p><p><a href="https://bookdown.org/content/4857/missing-data-and-other-opportunities.html#measurement-error" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">bookdown.org/content/4857/miss</span><span class="invisible">ing-data-and-other-opportunities.html#measurement-error</span></a></p>
Dr Mircea Zloteanu 🌼🐝<p><a href="https://mastodon.social/tags/statstab" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>statstab</span></a> #198 Bayesian mixed effects (aka multi-level) ordinal regression models with {brms}</p><p>Thoughts: Useful tutorial also for frequentists, as it covers checking multiple links at once in {ordinal}.</p><p><a href="https://mastodon.social/tags/ordinal" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ordinal</span></a> <a href="https://mastodon.social/tags/brms" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>brms</span></a> <a href="https://mastodon.social/tags/clmm" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>clmm</span></a> <a href="https://mastodon.social/tags/probit" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>probit</span></a> <a href="https://mastodon.social/tags/cloglog" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cloglog</span></a> <a href="https://mastodon.social/tags/r" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>r</span></a> <a href="https://mastodon.social/tags/cauchit" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>cauchit</span></a></p><p><a href="https://kevinstadler.github.io/notes/bayesian-ordinal-regression-with-random-effects-using-brms/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">kevinstadler.github.io/notes/b</span><span class="invisible">ayesian-ordinal-regression-with-random-effects-using-brms/</span></a></p>
Dr Mircea Zloteanu 🌼🐝<p><a href="https://mastodon.social/tags/statstab" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>statstab</span></a> #181 Comparing Bayesian Approaches by @jebyrnes</p><p>Thoughts: Compares running models in <a href="https://mastodon.social/tags/rethinking" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>rethinking</span></a>, <a href="https://mastodon.social/tags/stan" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>stan</span></a>, <a href="https://mastodon.social/tags/brms" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>brms</span></a>, <a href="https://mastodon.social/tags/inla" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>inla</span></a>, and <a href="https://mastodon.social/tags/glmmTMB" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>glmmTMB</span></a> via <a href="https://mastodon.social/tags/TMBstan" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TMBstan</span></a>. It's nice to have options.</p><p><a href="https://mastodon.social/tags/bayes" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>bayes</span></a> <a href="https://mastodon.social/tags/bayesian" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>bayesian</span></a> <a href="https://mastodon.social/tags/rstan" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>rstan</span></a> <a href="https://mastodon.social/tags/r" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>r</span></a> <a href="https://mastodon.social/tags/stats" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>stats</span></a> <a href="https://mastodon.social/tags/rstats" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>rstats</span></a></p><p><a href="https://biol609.github.io/lab/alt_to_rethinking.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">biol609.github.io/lab/alt_to_r</span><span class="invisible">ethinking.html</span></a></p>
Dr Mircea Zloteanu 🌼🐝<p>oh, low E-BFMI warning ⚠, why do you persist? just let me sleep...</p><p><a href="https://mastodon.social/tags/stan" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>stan</span></a> <a href="https://mastodon.social/tags/brms" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>brms</span></a> <a href="https://mastodon.social/tags/modelwoes" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>modelwoes</span></a></p>
Dr Mircea Zloteanu 🌼🐝<p><a href="https://mastodon.social/tags/statstab" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>statstab</span></a> #169 {priorsense} prior diagnostics and sensitivity analysis</p><p>Thoughts: Bayesian modelling requires more scrutiny of how one's choices impact outcomes. This packages has handy functions + plots.</p><p><a href="https://mastodon.social/tags/brms" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>brms</span></a> <a href="https://mastodon.social/tags/bayesian" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>bayesian</span></a> <a href="https://mastodon.social/tags/rstan" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>rstan</span></a> <a href="https://mastodon.social/tags/priors" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>priors</span></a><br><a href="https://mastodon.social/tags/mcmc" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mcmc</span></a> <a href="https://mastodon.social/tags/diagnostics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>diagnostics</span></a></p><p><a href="https://n-kall.github.io/priorsense/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">n-kall.github.io/priorsense/</span><span class="invisible"></span></a></p>
Mario Angst<p><span class="h-card" translate="no"><a href="https://rstats.me/@danwwilson" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>danwwilson</span></a></span> <span class="h-card" translate="no"><a href="https://genomic.social/@lwpembleton" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>lwpembleton</span></a></span> <a href="https://fediscience.org/tags/brms" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>brms</span></a> by <span class="h-card" translate="no"><a href="https://fosstodon.org/@paul_buerkner" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>paul_buerkner</span></a></span> has made Bayesian models incredibly fun and intuitive for me. I love the combination of well thought out defaults and API with a lot of depth and power, should you need it. Other than that, I think <a href="https://fediscience.org/tags/lubridate" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>lubridate</span></a> needs some love! Oh and <a href="https://fediscience.org/tags/igraph" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>igraph</span></a>, which just works ™️ plus it's lovely descendant <a href="https://fediscience.org/tags/tidygraph" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>tidygraph</span></a> 🕸️<br><a href="https://fediscience.org/tags/packagelove" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>packagelove</span></a></p>
Dr Mircea Zloteanu 🌼🐝<p><a href="https://mastodon.social/tags/statstab" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>statstab</span></a> #164 Ordinal regression models to analyze Likert scale data</p><p>Thoughts: One of the clearest tutorial for ordinal, cumulative (probit), models I've seen. Reports probabilities and expected mean ratinga, w/ plots!</p><p><a href="https://mastodon.social/tags/ordinal" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ordinal</span></a> <a href="https://mastodon.social/tags/brms" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>brms</span></a> <a href="https://mastodon.social/tags/likert" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>likert</span></a> <a href="https://mastodon.social/tags/probit" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>probit</span></a> <a href="https://mastodon.social/tags/r" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>r</span></a></p><p><a href="https://dibsmethodsmeetings.github.io/ordinal-regression/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">dibsmethodsmeetings.github.io/</span><span class="invisible">ordinal-regression/</span></a></p>
Gabe Winter<p>First version of my first <a href="https://ecoevo.social/tags/R" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>R</span></a> package is out and working! 🥳<br> <br><a href="https://gabewinter.github.io/VarDecomp/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">gabewinter.github.io/VarDecomp</span><span class="invisible">/</span></a></p><p>It has functions to: <br>- produce and evaluate <a href="https://ecoevo.social/tags/brms" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>brms</span></a> models <br>- do variance decomposition <br>- summarize and plot results </p><p>Let me know if you have some data to test it out and help improve it!</p>
Francisco Rodriguez-Sanchez<p>Just added support for multivariate (multiresponse) models to {DHARMa.helpers}, the <a href="https://ecoevo.social/tags/rstats" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>rstats</span></a> package that facilitates checking <a href="https://ecoevo.social/tags/Bayesian" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Bayesian</span></a> <a href="https://ecoevo.social/tags/brms" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>brms</span></a> models with {DHARMa}</p><p><a href="https://pakillo.github.io/DHARMa.helpers/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">pakillo.github.io/DHARMa.helpe</span><span class="invisible">rs/</span></a></p>
Dr Mircea Zloteanu 🌼🐝<p><a href="https://mastodon.social/tags/statstab" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>statstab</span></a> #119 A hands-on example of Bayesian<br>mixed models with {brms}</p><p>Thoughts: Initially, I found this guide to be difficult, but as my knowledge grew I realised the usefulness of wrangling the posterior directly to answer specific questions.</p><p><a href="https://mastodon.social/tags/brms" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>brms</span></a> <a href="https://mastodon.social/tags/r" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>r</span></a></p><p><a href="https://bayesat.github.io/lund2018/slides/andrey_anikin_slides.pdf" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">bayesat.github.io/lund2018/sli</span><span class="invisible">des/andrey_anikin_slides.pdf</span></a></p>
Dr Mircea Zloteanu 🌼🐝<p><a href="https://mastodon.social/tags/statstab" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>statstab</span></a> #111 Bayesian statistics resources [quick guide] <span class="h-card" translate="no"><a href="https://rogue-scholar.social/@andrewheiss" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>andrewheiss</span></a></span> </p><p>Thoughts: An excellent short guide to conducting/reporting bayesian analyses. Inc. theoretical diff. you need to be aware of, PD, ROPE, CrI, etc. </p><p><a href="https://mastodon.social/tags/brms" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>brms</span></a> <a href="https://mastodon.social/tags/bayesian" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>bayesian</span></a> <a href="https://mastodon.social/tags/tutorial" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>tutorial</span></a> <a href="https://mastodon.social/tags/guide" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>guide</span></a></p><p><a href="https://evalf21.classes.andrewheiss.com/resource/bayes/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">evalf21.classes.andrewheiss.co</span><span class="invisible">m/resource/bayes/</span></a></p>