fosstodon.org is one of the many independent Mastodon servers you can use to participate in the fediverse.
Fosstodon is an invite only Mastodon instance that is open to those who are interested in technology; particularly free & open source software. If you wish to join, contact us for an invite.

Administered by:

Server stats:

8.6K
active users

#productionml

0 posts0 participants0 posts today
Mikiko<p>🔖 The Top 5 Papers About MLOps You Should Know</p><p>5️⃣ Machine Learning Practices Outside Big Tech: How Resource Constraints Challenge Responsible Development By Aspen Hopkins, Serena Booth</p><p><a href="https://data-folks.masto.host/tags/mlops" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlops</span></a> <a href="https://data-folks.masto.host/tags/productionml" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>productionml</span></a> <a href="https://data-folks.masto.host/tags/devops" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>devops</span></a> <a href="https://data-folks.masto.host/tags/data" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>data</span></a> <a href="https://data-folks.masto.host/tags/datascience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>datascience</span></a> <a href="https://data-folks.masto.host/tags/readinglist" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>readinglist</span></a> <a href="https://data-folks.masto.host/tags/mlopsengineer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlopsengineer</span></a></p>
Mikiko<p>🔖 The Top 5 Papers About MLOps You Should Know (Part 2)</p><p>3️⃣ Machine Learning: The High-Interest Credit Card of Technical Debt by D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov,<br>Todd Phillips, Dietmar Ebner, Vinay Chaudhary, Michael Young</p><p>4️⃣ The ML Test Score: A Rubric for ML Production Readiness and Technical Debt Reduction By Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, D. Sculley</p><p><a href="https://data-folks.masto.host/tags/mlops" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlops</span></a> <a href="https://data-folks.masto.host/tags/productionml" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>productionml</span></a> <a href="https://data-folks.masto.host/tags/devops" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>devops</span></a> <a href="https://data-folks.masto.host/tags/data" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>data</span></a> <a href="https://data-folks.masto.host/tags/datascience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>datascience</span></a> <a href="https://data-folks.masto.host/tags/readinglist" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>readinglist</span></a> <a href="https://data-folks.masto.host/tags/mlopsengineer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlopsengineer</span></a></p>
Mikiko<p>🔖 The Top 5 Papers About MLOps You Should Know (Part 1)</p><p>1️⃣ Operationalizing Machine Learning: An Interview Study By<br>Shreya Shankar, Rolando Garcia, Joseph M. Hellerstein, Aditya G. Parameswaran</p><p>2️⃣ Socio-Technical Anti-Patterns in Building ML-Enabled Software by Alina Mailach, Nortbert Siegmund</p><p><a href="https://data-folks.masto.host/tags/mlops" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlops</span></a> <a href="https://data-folks.masto.host/tags/productionml" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>productionml</span></a> <a href="https://data-folks.masto.host/tags/devops" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>devops</span></a> <a href="https://data-folks.masto.host/tags/data" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>data</span></a> <a href="https://data-folks.masto.host/tags/datascience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>datascience</span></a> <a href="https://data-folks.masto.host/tags/readinglist" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>readinglist</span></a> <a href="https://data-folks.masto.host/tags/mlopsengineer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlopsengineer</span></a></p>
Mikiko<p>📝 What kind of MLOps team are you? [Part 3/3]<br><a href="https://data-folks.masto.host/tags/mlops" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlops</span></a> <a href="https://data-folks.masto.host/tags/productionml" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>productionml</span></a> <a href="https://data-folks.masto.host/tags/dataops" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dataops</span></a> <a href="https://data-folks.masto.host/tags/mlsystems" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlsystems</span></a> </p><p>In early starts-ups &amp; even at the Small/Med Size business, teams are often a combination of the different modes &amp; that's totally fine!</p><p>You don't always need a specialized team! </p><p>💡What's important to recognize is to know this framework exists for organziational alignment, as well as to know when teams can be spun out.</p>
Mikiko<p>📝 What kind of MLOps team are you? [Part2/3]<br><a href="https://data-folks.masto.host/tags/mlops" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlops</span></a> <a href="https://data-folks.masto.host/tags/productionml" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>productionml</span></a> <a href="https://data-folks.masto.host/tags/dataops" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dataops</span></a> <a href="https://data-folks.masto.host/tags/mlsystems" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlsystems</span></a> </p><p>🔍 Zeroing in on the ones that oftentimes constitute the ML Org or the Data org: </p><p>⛑ Enabling teams - Help the DS &amp; Product folks get those models out the door using the internal plateforms &amp; capabilities provided by the CST</p><p>⚙️ Complicated Subsystem team - Focused on maintaining &amp; expanding the extremely technical solution they own</p><p>👷🏻‍♀️The Platform Team - Owns unified &amp; integrated experience.</p>
Mikiko<p>📝 What kind of MLOps team are you? [Part1/3]</p><p>🗺️ In the world of "team Topologies" there are 4 types of teams. </p><p>🌊 Stream-aligned teams (ST) ---------&gt; Data science &amp; Product (for example) </p><p>⛑ Enabling teams (ET) ---------&gt; ML Engineering</p><p>⚙️ Complicated Subsystem team (CST) ---------&gt; The Kubernetes Team, the GCP team, the Terraform team, the Redis team, etc</p><p>👷🏻‍♀️The Platform Team (PT) ---------&gt; The ML Platform Team, The Data Platform Team, etc</p><p><a href="https://data-folks.masto.host/tags/mlops" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlops</span></a> <a href="https://data-folks.masto.host/tags/productionml" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>productionml</span></a> <a href="https://data-folks.masto.host/tags/dataops" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dataops</span></a> <a href="https://data-folks.masto.host/tags/mlsystems" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlsystems</span></a></p>
Mikiko<p>🧠 Everyone else: &lt;LLM Experts, producing multi-modal Gen AI systems. &gt;</p><p>🤓 Me: &lt;Still troubleshooting that lambda function to calculate Euclidean distance of lat/long columns in Polars Dataframe for a sample project in Colab. &gt; 😅</p><p>-----<br><a href="https://data-folks.masto.host/tags/datascience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>datascience</span></a> <a href="https://data-folks.masto.host/tags/mlops" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlops</span></a> <a href="https://data-folks.masto.host/tags/productionml" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>productionml</span></a> <a href="https://data-folks.masto.host/tags/ai" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ai</span></a> <a href="https://data-folks.masto.host/tags/mlengineer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlengineer</span></a></p>
Mikiko<p>The tools we have today are better than the ones we had before and this is especially true in the <a href="https://data-folks.masto.host/tags/mlops" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlops</span></a> world. We have more options than ever before (cc: MAD Turck Landscape) but confusion is just as high as it ever was.</p><p><a href="https://data-folks.masto.host/tags/mlops" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlops</span></a> <a href="https://data-folks.masto.host/tags/productionml" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>productionml</span></a> <a href="https://data-folks.masto.host/tags/mlengineering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlengineering</span></a> <a href="https://data-folks.masto.host/tags/oss" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>oss</span></a> <a href="https://data-folks.masto.host/tags/devtools" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>devtools</span></a> <a href="https://data-folks.masto.host/tags/python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>python</span></a></p>
Mikiko<p>👉🏻 Online Inference =/= Streaming</p><p>We're all aware of this right? That they're not the same thing?</p><p><a href="https://data-folks.masto.host/tags/mlops" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlops</span></a> <a href="https://data-folks.masto.host/tags/mlengineering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlengineering</span></a> <a href="https://data-folks.masto.host/tags/datascience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>datascience</span></a> <a href="https://data-folks.masto.host/tags/dataengineering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dataengineering</span></a> <a href="https://data-folks.masto.host/tags/productionml" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>productionml</span></a> <a href="https://data-folks.masto.host/tags/mlsystems" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlsystems</span></a> <a href="https://data-folks.masto.host/tags/systemdesign" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>systemdesign</span></a></p>
Mikiko<p>👉🏻 It is a truth universally acknowledged, that a data scientist in possession of a trained model, must be in want of a reliable means of productionization and deployment.</p><p>👣 And the journey of a thousand pipelines starts with...<br>knowing how to appropriately package your models from the get-go. 📦</p><p>This blog post is for you: <a href="https://medium.com/kitchen-sink-data-science/software-fundamentals-for-machine-learning-series-understanding-the-why-of-vms-containers-89621cf66d23?source=friends_link&amp;sk=4b4a9f37c1f609db2addbeb6fa219fb8&amp;utm_content=buffer8c348&amp;utm_medium=social&amp;utm_source=linkedin.com&amp;utm_campaign=buffer" rel="nofollow noopener" target="_blank"><span class="invisible">https://</span><span class="ellipsis">medium.com/kitchen-sink-data-s</span><span class="invisible">cience/software-fundamentals-for-machine-learning-series-understanding-the-why-of-vms-containers-89621cf66d23?source=friends_link&amp;sk=4b4a9f37c1f609db2addbeb6fa219fb8&amp;utm_content=buffer8c348&amp;utm_medium=social&amp;utm_source=linkedin.com&amp;utm_campaign=buffer</span></a></p><p><a href="https://data-folks.masto.host/tags/mlops" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlops</span></a> <a href="https://data-folks.masto.host/tags/mleng" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mleng</span></a> <a href="https://data-folks.masto.host/tags/productionml" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>productionml</span></a> <a href="https://data-folks.masto.host/tags/datascience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>datascience</span></a> <a href="https://data-folks.masto.host/tags/productdatascience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>productdatascience</span></a></p>
Mikiko<p>RT @BazeleyMikiko: 🤔 Do you think one of the reasons why your <a href="https://data-folks.masto.host/tags/datascientists" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>datascientists</span></a> aren't adopting your internal <a href="https://data-folks.masto.host/tags/mlops" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlops</span></a> or <a href="https://data-folks.masto.host/tags/productionml" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>productionml</span></a> tools is b/c the interface is hard-to-use</p>
Mikiko<p>🤔 Do you think one of the reasons why your <a href="https://data-folks.masto.host/tags/datascientists" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>datascientists</span></a> aren't adopting your internal <a href="https://data-folks.masto.host/tags/mlops" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlops</span></a> or <a href="https://data-folks.masto.host/tags/productionml" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>productionml</span></a> tools is b/c the interface is hard-to-use</p>
Mikiko<p>😳 My talk proposal to the <a href="https://data-folks.masto.host/tags/mlops" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlops</span></a> track was accepted to <a href="https://data-folks.masto.host/tags/DataCouncilAustin" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataCouncilAustin</span></a> 2023 🤯 </p><p>🎉 What an exciting way to start the year! 😃</p><p>Looking forward to connecting with folks in Austin from March 28-30th on <a href="https://data-folks.masto.host/tags/mlops" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlops</span></a> <a href="https://data-folks.masto.host/tags/productionml" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>productionml</span></a> <a href="https://data-folks.masto.host/tags/mlengineering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlengineering</span></a> <a href="https://data-folks.masto.host/tags/productiondatascience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>productiondatascience</span></a> <a href="https://data-folks.masto.host/tags/DataCouncilAustin2023" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataCouncilAustin2023</span></a> <a href="https://data-folks.masto.host/tags/datacouncil" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>datacouncil</span></a> </p><p>Please feel free to connect with me on LI if you're attending or presenting! <br><a href="https://www.linkedin.com/in/mikikobazeley/" rel="nofollow noopener" target="_blank"><span class="invisible">https://www.</span><span class="">linkedin.com/in/mikikobazeley/</span><span class="invisible"></span></a></p>
Mikiko<p>How can organizations get running with <a href="https://data-folks.masto.host/tags/ML" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ML</span></a>?</p><p>Organizations should :</p><p>✅ understand their <a href="https://data-folks.masto.host/tags/MLOps" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MLOps</span></a> maturity and be honest with where they're going;</p><p>✅ not try to build what other companies are building, and should instead focus on getting their fundamentals down.</p><p>✅ be problem-oriented and focus on solving the bottlenecks in their <a href="https://data-folks.masto.host/tags/productionml" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>productionml</span></a> and <a href="https://data-folks.masto.host/tags/deployment" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>deployment</span></a> stack.</p><p>✅ bridge the knowledge gap between the data science and engineering teams.</p><p><a href="https://youtu.be/l1MZRSJ-x4s" rel="nofollow noopener" target="_blank"><span class="invisible">https://</span><span class="">youtu.be/l1MZRSJ-x4s</span><span class="invisible"></span></a></p>
Mikiko<p>A few weeks ago a couple of us met to talk about the challenges of production ML. Twitter space included a group of data scientist, engineers, MLOps engineers, and DevRels.</p><p>I summarized the discussion &amp; clipped out relevant parts of the audio here:</p><p><a href="https://mikiko.hashnode.dev/a-discussion-top-challenges-of-moving-data-science-to-production" rel="nofollow noopener" target="_blank"><span class="invisible">https://</span><span class="ellipsis">mikiko.hashnode.dev/a-discussi</span><span class="invisible">on-top-challenges-of-moving-data-science-to-production</span></a></p><p><a href="https://data-folks.masto.host/tags/mlops" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlops</span></a> <a href="https://data-folks.masto.host/tags/productionml" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>productionml</span></a> <a href="https://data-folks.masto.host/tags/datascience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>datascience</span></a> <a href="https://data-folks.masto.host/tags/dataengineering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dataengineering</span></a></p>
Mikiko<p>My intro post: </p><p>👩🏻‍💻 <a href="https://data-folks.masto.host/tags/MLOps" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MLOps</span></a> @ Featureform 🤖<br>Focused on: DevRel ==<br>Community + Content + Product + Ecosystem</p><p>Also talk about: <br><a href="https://data-folks.masto.host/tags/dataengineering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dataengineering</span></a> <a href="https://data-folks.masto.host/tags/productionml" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>productionml</span></a> <a href="https://data-folks.masto.host/tags/platformengineering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>platformengineering</span></a></p><p>What I do:<br>⭐️ Develop ML platforms &amp; systems <br>⭐️ Contribute to the open-source ecosystem <br>⭐️ Content</p><p>📬 Substack: <a href="https://mikikobazeley.substack.com/" rel="nofollow noopener" target="_blank"><span class="invisible">https://</span><span class="">mikikobazeley.substack.com/</span><span class="invisible"></span></a></p><p>📖 Blog: <a href="https://mikiko.hashnode.dev/" rel="nofollow noopener" target="_blank"><span class="invisible">https://</span><span class="">mikiko.hashnode.dev/</span><span class="invisible"></span></a></p><p>📹 Youtube: <a href="https://bit.ly/3MBR8N3" rel="nofollow noopener" target="_blank"><span class="invisible">https://</span><span class="">bit.ly/3MBR8N3</span><span class="invisible"></span></a></p><p>🐙🐈 Github: <a href="https://github.com/MMBazel" rel="nofollow noopener" target="_blank"><span class="invisible">https://</span><span class="">github.com/MMBazel</span><span class="invisible"></span></a></p><p>👾 Twitch: <a href="https://bit.ly/3Akmwfe" rel="nofollow noopener" target="_blank"><span class="invisible">https://</span><span class="">bit.ly/3Akmwfe</span><span class="invisible"></span></a></p><p>💼 LinkedIn: <a href="https://www.linkedin.com/in/mikikobazeley/" rel="nofollow noopener" target="_blank"><span class="invisible">https://www.</span><span class="">linkedin.com/in/mikikobazeley/</span><span class="invisible"></span></a></p>
Mikiko<p>So don't let the shift in topic to Data-Centric AI fool you into thinking modeling, algorithms, feature engineering, etc aren't important.</p><p>Instead see the focus of convo on data as an acknowledgement of an impactful area that has been underappreciated in its impact on ML.</p><p><a href="https://data-folks.masto.host/tags/mlops" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlops</span></a> <a href="https://data-folks.masto.host/tags/dataengineering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dataengineering</span></a> <a href="https://data-folks.masto.host/tags/productionml" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>productionml</span></a> <a href="https://data-folks.masto.host/tags/mlsystems" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlsystems</span></a></p>
Mikiko<p>If you talk to most serious athletes or bodybuilders, they'll tell you how important diet is in achieving their goals. (Hint: The phrase "Abs are made in the kitchen")</p><p>But they'll also wax lyrical about<br>✔️ their splits (upper vs lower, arms/shoulders/core vs back/chest vs legs),<br>✔️ how much they hate cardio (which I find inexplicable as secretly they love it, they just say they hate it because everyone else says it),<br>✔️ their cheat meals.</p><p><a href="https://data-folks.masto.host/tags/mlops" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlops</span></a> <a href="https://data-folks.masto.host/tags/dataengineering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dataengineering</span></a> <a href="https://data-folks.masto.host/tags/productionml" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>productionml</span></a> <a href="https://data-folks.masto.host/tags/mlsystems" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlsystems</span></a></p>
Mikiko<p>❓❓ What is the difference between Model-Centric AI vs Data-Centric AI ❓❓</p><p>By analogy:</p><p>👉🏻 <a href="https://data-folks.masto.host/tags/ModelCentricAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ModelCentricAI</span></a> ➡️ The workout matters 🏋🏻‍♀️<br>👉🏻 <a href="https://data-folks.masto.host/tags/DataCentricAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataCentricAI</span></a>: ➡️ The diet matters 🥗</p><p>So the difference between Model-Centric AI and Data-Centric AI is like optimizing on the workout (types of lifts, cardio, reps &amp; intensity, etc) versus optimizing the diet (caloric intake, macros, timing, etc).</p><p><a href="https://data-folks.masto.host/tags/mlops" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlops</span></a> <a href="https://data-folks.masto.host/tags/dataengineering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dataengineering</span></a> <a href="https://data-folks.masto.host/tags/productionml" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>productionml</span></a> <a href="https://data-folks.masto.host/tags/mlsystems" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlsystems</span></a></p>
Mikiko<p>Who Am I: <br>👉🏻 Head of <a href="https://data-folks.masto.host/tags/mlops" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlops</span></a> &amp; solutions at <a href="https://data-folks.masto.host/tags/featureform" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>featureform</span></a> , a <a href="https://data-folks.masto.host/tags/virtualfeaturestore" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>virtualfeaturestore</span></a></p><p>What I Do:<br>⭐️ Develop <a href="https://data-folks.masto.host/tags/MLplatforms" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MLplatforms</span></a> &amp; <a href="https://data-folks.masto.host/tags/MLOpssystems" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MLOpssystems</span></a> that work, no matter the business or technology constraints;<br>⭐️ Contribute to the <a href="https://data-folks.masto.host/tags/opensource" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>opensource</span></a> MLOps ecosystem &amp; continue to drive innovation (as well as <a href="https://data-folks.masto.host/tags/GCP" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GCP</span></a> , <a href="https://data-folks.masto.host/tags/AWS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AWS</span></a> , <a href="https://data-folks.masto.host/tags/Azure" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Azure</span></a>);<br>⭐️ Create high-quality &amp; thoughtful content that helps everyone in <a href="https://data-folks.masto.host/tags/productionML" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>productionML</span></a> become more productive, collaborative, &amp; happier.</p><p>I also talk about:<br><a href="https://data-folks.masto.host/tags/dataengineer" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dataengineer</span></a> <a href="https://data-folks.masto.host/tags/datascience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>datascience</span></a> <a href="https://data-folks.masto.host/tags/career" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>career</span></a></p>