fosstodon.org is one of the many independent Mastodon servers you can use to participate in the fediverse.
Fosstodon is an invite only Mastodon instance that is open to those who are interested in technology; particularly free & open source software. If you wish to join, contact us for an invite.

Administered by:

Server stats:

9.9K
active users

#polars

1 post1 participant0 posts today
Michael Sumner<p>wow, <a href="https://rstats.me/tags/polars" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>polars</span></a> is good - just read-from-url filter/select/unique super straightforward</p><p><a href="https://rstats.me/tags/python" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>python</span></a></p>
narkode<p>I am transforming a project from <a href="https://nerdculture.de/tags/pandas" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>pandas</span></a> to <a href="https://nerdculture.de/tags/polars" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>polars</span></a> and I already like it! I don't want to talk bad about <a href="https://nerdculture.de/tags/pandas" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>pandas</span></a>, it did a lot for the data science community. But, beside of being blazingly fast, the syntax of <a href="https://nerdculture.de/tags/polars" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>polars</span></a> is much more logic and consistent!</p>
Towards Data Science<p>Struggling with slow GIS processing? Tony Albanese's article demonstrates a lightning-fast method for generating transects using <a href="https://hachyderm.io/tags/Geopandas" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Geopandas</span></a> and <a href="https://hachyderm.io/tags/Polars" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Polars</span></a>, reducing processing time from days to seconds. </p><p><a href="https://towardsdatascience.com/harnessing-polars-and-geopandas-to-generate-millions-of-transects-in-seconds-d37b176a0b57/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">towardsdatascience.com/harness</span><span class="invisible">ing-polars-and-geopandas-to-generate-millions-of-transects-in-seconds-d37b176a0b57/</span></a></p>
:rss: DevelopersIO<p>AWS LambdaでDuckDBとAWS Data Wrangler、Polarsの処理性能を比較してみた<br><a href="https://dev.classmethod.jp/articles/comparing-csv-to-parquet-conversion-speed-in-aws-lambda/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">dev.classmethod.jp/articles/co</span><span class="invisible">mparing-csv-to-parquet-conversion-speed-in-aws-lambda/</span></a></p><p><a href="https://rss-mstdn.studiofreesia.com/tags/dev_classmethod" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>dev_classmethod</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/AWS_Lambda" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AWS_Lambda</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/awswrangler" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>awswrangler</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/DuckDB" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DuckDB</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/Polars" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Polars</span></a> <a href="https://rss-mstdn.studiofreesia.com/tags/AWS_CDK" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AWS_CDK</span></a></p>
Habr<p>Polars для обработки JSON и Parquet</p><p>Привет, Хабр! Сегодня рассмотрим тему обработки временных рядов с помощью Polars. Начну с того, что в Pandas для агрегации временных рядов принято использовать метод resample() . Он удобен и привычен, но имеет свои ограничения по производительности и гибкости. Polars, в свою очередь, имеет метод groupby_dynamic() , который позволяет группировать данные по динамическим временным интервалам.</p><p><a href="https://habr.com/ru/companies/otus/articles/892812/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">habr.com/ru/companies/otus/art</span><span class="invisible">icles/892812/</span></a></p><p><a href="https://zhub.link/tags/polars" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>polars</span></a> <a href="https://zhub.link/tags/%D0%B2%D1%80%D0%B5%D0%BC%D0%B5%D0%BD%D0%BD%D1%8B%D0%B5_%D1%80%D1%8F%D0%B4%D1%8B" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>временные_ряды</span></a> <a href="https://zhub.link/tags/%D0%BE%D0%B1%D1%80%D0%B0%D0%B1%D0%BE%D1%82%D0%BA%D0%B0_%D0%B2%D1%80%D0%B5%D0%BC%D0%B5%D0%BD%D0%BD%D1%8B%D1%85_%D1%80%D1%8F%D0%B4%D0%BE%D0%B2" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>обработка_временных_рядов</span></a> <a href="https://zhub.link/tags/%D0%B0%D0%BD%D0%B0%D0%BB%D0%B8%D1%82%D0%B8%D0%BA%D0%B0" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>аналитика</span></a></p>
PyCharm Blog<p>Polars vs. pandas – Python のデータフレームライブラリを徹底比較<br><a href="https://techhub.social/tags/Python" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Python</span></a> <a href="https://techhub.social/tags/Pycharm" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Pycharm</span></a> <a href="https://techhub.social/tags/Datascience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Datascience</span></a> <a href="https://techhub.social/tags/Pandas" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Pandas</span></a> <a href="https://techhub.social/tags/Polars" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Polars</span></a></p><p><a href="https://blog.jetbrains.com/pycharm/2025/02/polars-vs-pandas" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">blog.jetbrains.com/pycharm/202</span><span class="invisible">5/02/polars-vs-pandas</span></a></p>
Cuducos<p>Do I know any <a href="https://tech.lgbt/tags/Polars" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Polars</span></a> contributor or maintainer? I would love to help with that bug/exploration, but I am not sure where to start!</p><p><a href="https://github.com/pola-rs/polars/issues/21851" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">github.com/pola-rs/polars/issu</span><span class="invisible">es/21851</span></a> <a href="https://tech.lgbt/tags/Python" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Python</span></a> <a href="https://tech.lgbt/tags/Rust" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Rust</span></a></p>
EuroSciPy<p>Working on core array computing libraries that power <a href="https://fosstodon.org/tags/scientificPython" class="mention hashtag" rel="tag">#<span>scientificPython</span></a>? <a href="https://fosstodon.org/tags/EuroSciPy2025" class="mention hashtag" rel="tag">#<span>EuroSciPy2025</span></a> wants your proposals on optimized array operations, vectorization techniques, and numerical foundations. Submit your groundbreaking work!</p><p><a href="https://pretalx.com/euroscipy-2025/cfp" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="">pretalx.com/euroscipy-2025/cfp</span><span class="invisible"></span></a></p><p><a href="https://fosstodon.org/tags/ScientificComputing" class="mention hashtag" rel="tag">#<span>ScientificComputing</span></a> <a href="https://fosstodon.org/tags/Python" class="mention hashtag" rel="tag">#<span>Python</span></a> <a href="https://fosstodon.org/tags/EuroSciPy" class="mention hashtag" rel="tag">#<span>EuroSciPy</span></a> <a href="https://fosstodon.org/tags/numpy" class="mention hashtag" rel="tag">#<span>numpy</span></a> <a href="https://fosstodon.org/tags/scipy" class="mention hashtag" rel="tag">#<span>scipy</span></a> <a href="https://fosstodon.org/tags/pandas" class="mention hashtag" rel="tag">#<span>pandas</span></a> <a href="https://fosstodon.org/tags/polars" class="mention hashtag" rel="tag">#<span>polars</span></a></p>
Data Science<p>Polars is a lightning fast DataFrame library/in-memory query engine with parallel execution and cache efficiency. And now you can use is with the tidyverse syntax: <a href="https://www.tidypolars.etiennebacher.com/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="">tidypolars.etiennebacher.com/</span><span class="invisible"></span></a> <a href="https://genomic.social/tags/rstats" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>rstats</span></a> <a href="https://genomic.social/tags/polars" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>polars</span></a> <a href="https://genomic.social/tags/optimisation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>optimisation</span></a></p>
Mainmatter<p>🌊  Kisters provides real-time flood warnings—but traffic spikes made scaling costly. We helped them build a Rust-based system using Polars to process data efficiently across servers, edge, and browsers (WASM)—keeping performance high and costs low.</p><p>Read more ➡️ <a href="https://mainmatter.com/cases/kisters/?utm_source=linkedin" target="_blank" rel="nofollow noopener noreferrer" translate="no"><span class="invisible">https://</span><span class="ellipsis">mainmatter.com/cases/kisters/?</span><span class="invisible">utm_source=linkedin</span></a> </p><p><a href="https://fosstodon.org/tags/rustlang" class="mention hashtag" rel="tag">#<span>rustlang</span></a> <a href="https://fosstodon.org/tags/WASM" class="mention hashtag" rel="tag">#<span>WASM</span></a> <a href="https://fosstodon.org/tags/edgecomputing" class="mention hashtag" rel="tag">#<span>edgecomputing</span></a> <a href="https://fosstodon.org/tags/cloudoptimization" class="mention hashtag" rel="tag">#<span>cloudoptimization</span></a> <a href="https://fosstodon.org/tags/polars" class="mention hashtag" rel="tag">#<span>polars</span></a></p>
Wolf<p>At last night’s <span class="h-card" translate="no"><a href="https://hachyderm.io/@mug" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>mug</span></a></span> meeting we looked at a lot of different solutions to <a href="https://hachyderm.io/tags/adventofcode" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>adventofcode</span></a> day 1 in many different languages. Two that were very interesting to me were <a href="https://hachyderm.io/tags/Zig" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Zig</span></a> and <a href="https://hachyderm.io/tags/haskell" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>haskell</span></a>. The way these two languages worked was really quite fascinating. After seeing real code in these two languages, I can tell they are not for me; but they were interesting and illuminating nonetheless. </p><p>There was a solution entirely in <a href="https://hachyderm.io/tags/SQL" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>SQL</span></a>. Another in <a href="https://hachyderm.io/tags/vim9script" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>vim9script</span></a>. Another in <a href="https://hachyderm.io/tags/swiftlang" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>swiftlang</span></a> <a href="https://hachyderm.io/tags/swift" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>swift</span></a> (I don’t think that one’s in the repo yet). I wrote several implementations myself. The one I felt most proud of is <a href="https://hachyderm.io/tags/Python" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Python</span></a> with the core written in <a href="https://hachyderm.io/tags/rustlang" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>rustlang</span></a> <a href="https://hachyderm.io/tags/rust" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>rust</span></a> tied together with <a href="https://hachyderm.io/tags/PyO3" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PyO3</span></a>. The one I felt was maybe the best tool for the job was entirely based on <a href="https://hachyderm.io/tags/pandas" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>pandas</span></a>. As I said in a previous post, I tried to solve it in <a href="https://hachyderm.io/tags/polars" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>polars</span></a>, but the API exposed by Polars at least as far as I could tell, made it no better than simple lists in Python. I need to get deeper knowledge here. </p><p>The repo lives here: <a href="https://github.com/MichiganUnixUserGroup/MUG-2025-03-11-Advent-of-Code" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">github.com/MichiganUnixUserGro</span><span class="invisible">up/MUG-2025-03-11-Advent-of-Code</span></a>.</p>
Wolf<p>I solved a small problem trying to do it using only <a href="https://hachyderm.io/tags/pandas" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>pandas</span></a> (it was <a href="https://hachyderm.io/tags/adventofcode" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>adventofcode</span></a> day 1). I know Pandas pretty well. The solution to both parts together turned out to be very short. </p><p>Tried to do the same thing in <a href="https://hachyderm.io/tags/polars" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>polars</span></a>. Way harder. Didn’t get to leverage DataFrames. Basically just used Series and they were just glorified lists. This was my first experience with Polars. So my ignorance was certainly a factor. But wow. Pandas just did the job better. I’m sure Polars is still growing. I really want to like it!</p>
Eric R. Scott<p>There are now so many &quot;backends&quot; for {dplyr}—duckdb with {duckplyr}, polars with {tidypolars}, various database engines with {dbplyr}, {data.table} with {dtplyr}. Is there a blog post or flow chart somewhere with pros and cons of each? Like, comparisons of memory requirements, speed, and how likely they are to &quot;just work&quot;?</p><p><a href="https://fosstodon.org/tags/rstats" class="mention hashtag" rel="tag">#<span>rstats</span></a> <a href="https://fosstodon.org/tags/duckdb" class="mention hashtag" rel="tag">#<span>duckdb</span></a> <a href="https://fosstodon.org/tags/dplyr" class="mention hashtag" rel="tag">#<span>dplyr</span></a> <a href="https://fosstodon.org/tags/tidyverse" class="mention hashtag" rel="tag">#<span>tidyverse</span></a> <a href="https://fosstodon.org/tags/polars" class="mention hashtag" rel="tag">#<span>polars</span></a></p>
Hacker News<p>The Best Way to Use Text Embeddings Portably Is with Parquet and Polars — <a href="https://minimaxir.com/2025/02/embeddings-parquet/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">minimaxir.com/2025/02/embeddin</span><span class="invisible">gs-parquet/</span></a><br><a href="https://mastodon.social/tags/HackerNews" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>HackerNews</span></a> <a href="https://mastodon.social/tags/TextEmbeddings" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TextEmbeddings</span></a> <a href="https://mastodon.social/tags/Parquet" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Parquet</span></a> <a href="https://mastodon.social/tags/Polars" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Polars</span></a> <a href="https://mastodon.social/tags/DataScience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DataScience</span></a> <a href="https://mastodon.social/tags/MachineLearning" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MachineLearning</span></a></p>
benrutter<p>Was noodling around with Gleam a while back, needed a dataframe library and set up a half-baked interface for polars.</p><p>I can't beleive how easy the js ffi made it! Language FFI is such a hidden superpower, more of this please from bew languages! 😍</p><p><a href="https://mastodon.green/tags/programming" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>programming</span></a> <a href="https://mastodon.green/tags/gleam" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>gleam</span></a> <a href="https://mastodon.green/tags/polars" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>polars</span></a></p>
Alexandre B A Villares 🐍<p>"Plotando estatísticas básicas com <a href="https://ciberlandia.pt/tags/Polars" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Polars</span></a> e <a href="https://ciberlandia.pt/tags/Matplotlib" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Matplotlib</span></a> - <a href="https://ciberlandia.pt/tags/NLP" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>NLP</span></a> 04 " <span class="h-card" translate="no"><a href="https://bolha.us/@dunossauro" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>dunossauro</span></a></span> <a href="https://ciberlandia.pt/tags/Python" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Python</span></a></p><p><a href="https://www.youtube.com/watch?v=4HpSFIekqDw" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">youtube.com/watch?v=4HpSFIekqD</span><span class="invisible">w</span></a> </p><p>Hoje eu aprendi uma ideia ótima do Dunossauro que é imaginar que o ax do fig, ax do matplotlib (axis/eixo) é como uma haste onde penduramos as coisas! Como é fundamental o trabalho dele pra nossa comunidade.</p><p>Update: inicialmente achei que era uma tradução corrente mas ele me explicou que não.</p>
Jim Gardner<p>Does anyone have advice for unit testing a Polars Python expression? Say I have:</p><p>def my_func(a, b):<br> return (pl.col(a) / pl.col(b))</p><p>How do you unit test? We want to compare the result of this function to an expectation. At the moment we’re wrapping the result in str(), which gives us a stringified version of the expression. Then we assert that it is equal to the stringified expression that we would expect.</p><p>It works, just feels a little bit fragile. Unfortunately you can’t compare expressions directly with the equality operator ==. And polars.testing doesn’t have asserts for it either.</p><p>(We are of course also going to have integration tests, where the expression actually gets used on a df fixture)</p><p><span class="h-card" translate="no"><a href="https://bird.makeup/users/jeroenhjanssens" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>jeroenhjanssens</span></a></span> <br><a href="https://hachyderm.io/tags/Polars" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Polars</span></a> <a href="https://hachyderm.io/tags/Python" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Python</span></a> <a href="https://hachyderm.io/tags/PyData" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PyData</span></a></p>
Isa Bernardini<p>Une auteure de <a href="https://mastodon.social/tags/polars" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>polars</span></a> à suivre assurément. J’en ai lu plusieurs d’elle, dont «&nbsp;Block 46&nbsp;». Voici son «&nbsp;dernier&nbsp;» sorti.<br>Je ne gagne absolument rien à faire sa pub, je suis juste une personne qui aime ce qu’elle <a href="https://mastodon.social/tags/%C3%A9crit" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>écrit</span></a> et représente. Une bien belle personne.</p>
Markus Suhr<p>Just caught up with the recent Delta Lake webinar, </p><p>&gt; Revolutionizing Delta Lake workflows on AWS Lambda with Polars, DuckDB, Daft &amp; Rust</p><p>Some interesting hints there regarding lightweight processing of big-ish data. Easy to relate to any other framework instead of Lambda, e.g. <a href="https://gruene.social/tags/ApacheAirflow" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ApacheAirflow</span></a> tasks</p><p><a href="https://youtu.be/BR9oFD0QMAs" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">youtu.be/BR9oFD0QMAs</span><span class="invisible"></span></a></p><p><a href="https://gruene.social/tags/dataengineering" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>dataengineering</span></a> <a href="https://gruene.social/tags/datascience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datascience</span></a> <a href="https://gruene.social/tags/duckdb" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>duckdb</span></a> <a href="https://gruene.social/tags/daft" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>daft</span></a> <a href="https://gruene.social/tags/polars" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>polars</span></a> <a href="https://gruene.social/tags/pandas" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>pandas</span></a> <a href="https://gruene.social/tags/python" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>python</span></a> <a href="https://gruene.social/tags/spark" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>spark</span></a> <a href="https://gruene.social/tags/deltalake" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>deltalake</span></a> <a href="https://gruene.social/tags/databricks" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>databricks</span></a> <a href="https://gruene.social/tags/airflow" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>airflow</span></a> <a href="https://gruene.social/tags/bigdata" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>bigdata</span></a> <a href="https://gruene.social/tags/smalldata" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>smalldata</span></a></p>
Alexandre B A Villares 🐍<p>"Estáticas básicas de texto com <a href="https://ciberlandia.pt/tags/Polars" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Polars</span></a> e <a href="https://ciberlandia.pt/tags/Spacy" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Spacy</span></a> - <a href="https://ciberlandia.pt/tags/NLP" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>NLP</span></a> 03 " <a href="https://ciberlandia.pt/tags/Python" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Python</span></a> <a href="https://www.youtube.com/watch?v=FgsdmxILSFo" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">youtube.com/watch?v=FgsdmxILSF</span><span class="invisible">o</span></a></p>