fosstodon.org is one of the many independent Mastodon servers you can use to participate in the fediverse.
Fosstodon is an invite only Mastodon instance that is open to those who are interested in technology; particularly free & open source software. If you wish to join, contact us for an invite.

Administered by:

Server stats:

8.6K
active users

#mlengineering

0 posts0 participants0 posts today
Domain-Driven Design Europe<p>Join us for hands-on Machine Learning deployment training! You'll analyse errors, tweak models, and push to production using real-world engineering patterns—way beyond the "drop your model on S3 and call it a day" approach. Gain practical experience with sophisticated ML engineering techniques that you can immediately apply on the job. <a href="https://m.aardling.social/tags/MLEngineering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MLEngineering</span></a> <a href="https://m.aardling.social/tags/AITraining" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AITraining</span></a> <br>👉 <a href="https://ddd.academy/put-an-ml-model-in-production/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">ddd.academy/put-an-ml-model-in</span><span class="invisible">-production/</span></a></p>
blaze.email<p>📊 Dive deep with MIT's flow matching course or scale neural networks across thousands of GPUs with Jeremy Jordan's guide. The math behind efficient ML! <a href="https://mastodon.social/tags/DataScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataScience</span></a> <a href="https://mastodon.social/tags/MLEngineering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MLEngineering</span></a> </p><p><a href="https://blaze.email/Machine-Learning-Engineer" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">blaze.email/Machine-Learning-E</span><span class="invisible">ngineer</span></a></p>
MLE Path<p>Early in your ML career, every decision feels irreversible. But the best engineers don’t aim for perfection—they build with reversibility in mind.</p><p>Understanding the difference between one-way and two-way doors will help you iterate faster and build better.</p><p><a href="https://mastodon.social/tags/MachineLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MachineLearning</span></a> <a href="https://mastodon.social/tags/MLEngineering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MLEngineering</span></a> <a href="https://mastodon.social/tags/TechCareers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TechCareers</span></a></p>
Judith van Stegeren<p>A few tips for optimizing Pytorch model training time from a Yandex ML engineer.</p><p><a href="https://alexdremov.me/simple-ways-to-speedup-your-pytorch-model-training/" target="_blank" rel="nofollow noopener" translate="no"><span class="invisible">https://</span><span class="ellipsis">alexdremov.me/simple-ways-to-s</span><span class="invisible">peedup-your-pytorch-model-training/</span></a></p><p><a href="https://fosstodon.org/tags/ml" class="mention hashtag" rel="tag">#<span>ml</span></a> <a href="https://fosstodon.org/tags/mlengineering" class="mention hashtag" rel="tag">#<span>mlengineering</span></a> <a href="https://fosstodon.org/tags/modeltraining" class="mention hashtag" rel="tag">#<span>modeltraining</span></a> <a href="https://fosstodon.org/tags/pytorch" class="mention hashtag" rel="tag">#<span>pytorch</span></a> <a href="https://fosstodon.org/tags/modeloptimization" class="mention hashtag" rel="tag">#<span>modeloptimization</span></a></p>
Vic<p>5 in-demand ☁️ <a href="https://techhub.social/tags/cloudjobs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>cloudjobs</span></a> for 2024:<br>1➧ Cloud Security Engineer: <br>$152,000. Responsibilities include securing digital estates and protecting networks.<br>2➧ Cloud Solutions Architect: <br>$150,000. Create and maintain cloud solutions.<br>3➧ Cloud AI/ML Engineer:<br>$162,000. Build AI and ML systems for data-driven decision-making.<br>4➧ DevOps Engineer:<br>$123,000. Focusing on cloud infrastructure and IT operations automation.<br>5➧ Cloud Support Engineer: <br>$130,000. Acting as liaisons for cloud products and customer support.</p><p><a href="https://www.sdxcentral.com/articles/analysis/5-high-paying-and-in-demand-cloud-jobs-for-2024/2024/01/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">sdxcentral.com/articles/analys</span><span class="invisible">is/5-high-paying-and-in-demand-cloud-jobs-for-2024/2024/01/</span></a> </p><p><a href="https://techhub.social/tags/CloudComputing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CloudComputing</span></a> <a href="https://techhub.social/tags/CloudJobs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CloudJobs</span></a> <a href="https://techhub.social/tags/TechCareers" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TechCareers</span></a> <a href="https://techhub.social/tags/CloudSecurity" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CloudSecurity</span></a> <a href="https://techhub.social/tags/SolutionsArchitecture" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SolutionsArchitecture</span></a> <a href="https://techhub.social/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> <a href="https://techhub.social/tags/AIEngineering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AIEngineering</span></a> <a href="https://techhub.social/tags/ML" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ML</span></a> <a href="https://techhub.social/tags/MLEngineering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MLEngineering</span></a> <a href="https://techhub.social/tags/DevOps" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DevOps</span></a> <a href="https://techhub.social/tags/CloudSupport" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CloudSupport</span></a> <a href="https://techhub.social/tags/TechTrends" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TechTrends</span></a> <a href="https://techhub.social/tags/Innovation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Innovation</span></a> <a href="https://techhub.social/tags/DataSecurity" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataSecurity</span></a> <a href="https://techhub.social/tags/MachineLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MachineLearning</span></a> <a href="https://techhub.social/tags/ArtificialIntelligence" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ArtificialIntelligence</span></a></p><p><a href="https://techhub.social/tags/FrontierAirlines" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FrontierAirlines</span></a> <a href="https://techhub.social/tags/Deloitte" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Deloitte</span></a> <a href="https://techhub.social/tags/Intel" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Intel</span></a> <a href="https://techhub.social/tags/Hinge" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Hinge</span></a> <a href="https://techhub.social/tags/Microsoft" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Microsoft</span></a> <a href="https://techhub.social/tags/PaloAltoNetworks" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PaloAltoNetworks</span></a> <a href="https://techhub.social/tags/Infosys" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Infosys</span></a> <a href="https://techhub.social/tags/KeysightTechnologies" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>KeysightTechnologies</span></a> <a href="https://techhub.social/tags/Atlassian" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Atlassian</span></a> <a href="https://techhub.social/tags/Netflix" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Netflix</span></a> <a href="https://techhub.social/tags/DellTechnologies" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DellTechnologies</span></a> <a href="https://techhub.social/tags/Salesforce" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Salesforce</span></a> <a href="https://techhub.social/tags/FICO" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FICO</span></a> <a href="https://techhub.social/tags/Gartner" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Gartner</span></a> <a href="https://techhub.social/tags/TheHomeDepot" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TheHomeDepot</span></a> <a href="https://techhub.social/tags/AmazonWebServices" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AmazonWebServices</span></a> <a href="https://techhub.social/tags/DigitalOcean" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DigitalOcean</span></a> <a href="https://techhub.social/tags/Snowflake" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Snowflake</span></a> <a href="https://techhub.social/tags/Couchbase" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Couchbase</span></a></p>
Chris Offner<p>Here's a more clearly visible demonstration of the problem I described previously: <a href="https://sigmoid.social/@chrisoffner3d/111591367887994819" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">sigmoid.social/@chrisoffner3d/</span><span class="invisible">111591367887994819</span></a></p><p>On the left we see the progression of cross-attention maps extracted via the CPU, on the right we see the same cross-attention maps extracted via the GPU.</p><p>This is using the <a href="https://sigmoid.social/tags/Keras" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Keras</span></a> implementation of <a href="https://sigmoid.social/tags/StableDiffusion" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>StableDiffusion</span></a> on an M3 Max.</p><p><a href="https://sigmoid.social/tags/TensorFlow" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TensorFlow</span></a> <a href="https://sigmoid.social/tags/StableDiffusion" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>StableDiffusion</span></a> <a href="https://sigmoid.social/tags/Diffusion" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Diffusion</span></a> <a href="https://sigmoid.social/tags/Python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Python</span></a> <a href="https://sigmoid.social/tags/MLEngineering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MLEngineering</span></a> <a href="https://sigmoid.social/tags/MachineLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MachineLearning</span></a> <a href="https://sigmoid.social/tags/DeepLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DeepLearning</span></a> <a href="https://sigmoid.social/tags/GPU" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GPU</span></a> <a href="https://sigmoid.social/tags/M3Max" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>M3Max</span></a></p>
Chris Offner<p>For example, check the second row, fifth column and how it changes between t = 600 and t = 700.</p><p>Is this some bug specific to Apple GPUs or does this also happen with CUDA?</p><p>For t = 0, the CPU and GPU images look identical. For higher t, the GPU run produces *very* different results even when re-running with the exact same model inputs, i.e. also for the same time step t.</p><p>Any idea why that is?</p><p><a href="https://sigmoid.social/tags/MLEngineering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MLEngineering</span></a> <a href="https://sigmoid.social/tags/GPU" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GPU</span></a> <a href="https://sigmoid.social/tags/DeepLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DeepLearning</span></a> <a href="https://sigmoid.social/tags/Diffusion" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Diffusion</span></a> <a href="https://sigmoid.social/tags/CUDA" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CUDA</span></a> <a href="https://sigmoid.social/tags/AppleSilicon" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AppleSilicon</span></a> <a href="https://sigmoid.social/tags/TensorFlow" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TensorFlow</span></a> <a href="https://sigmoid.social/tags/Keras" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Keras</span></a></p>
Chris Offner<p>I'm running into some unexpected and significant non-determinism when running a <a href="https://sigmoid.social/tags/Keras" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Keras</span></a> diffusion model on my Apple GPU.</p><p>On the left we see the progression of cross-attention maps for time steps from t = 0 to t = 900 when running the model via the CPU.</p><p>We see that each cross-attention map undergoes some "refinement" progression as we go from t = 0 to t= 900.</p><p>On the right we see the same but on the GPU.</p><p>It's a much more erratic and discontinuous progression.</p><p><a href="https://sigmoid.social/tags/MLEngineering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MLEngineering</span></a> <a href="https://sigmoid.social/tags/DeepLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DeepLearning</span></a> <a href="https://sigmoid.social/tags/GPU" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GPU</span></a></p>
Mikiko<p>🔖 The Top 5 Papers About <a href="https://data-folks.masto.host/tags/mlops" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlops</span></a> You Should Know (Part 1)</p><p>I've seen a ton of lists about the most important papers in <a href="https://data-folks.masto.host/tags/ml" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ml</span></a>, <a href="https://data-folks.masto.host/tags/datascience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>datascience</span></a>, <a href="https://data-folks.masto.host/tags/deeplearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>deeplearning</span></a>, <a href="https://data-folks.masto.host/tags/mlengineering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlengineering</span></a>. </p><p>But I've either seen not that many <a href="https://data-folks.masto.host/tags/mlops" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlops</span></a> reading lists or when I do run across them they tend to be focused a bit too deeply on specific ML systems or domains or algorithms. </p><p>👉🏻 If you only read 5 papers to understand why ML is hard (and how big the problem space of MLOps is) it should be these papers. </p><p>[To Be Continued]</p>
Tim Kellogg<p>Does anyone here have experience with <a href="https://hachyderm.io/tags/Prefect" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Prefect</span></a>? What's the best way to automate blocks? can you do it via <a href="https://hachyderm.io/tags/terraform" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>terraform</span></a>? <a href="https://hachyderm.io/tags/ml" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ml</span></a> <a href="https://hachyderm.io/tags/mlengineering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlengineering</span></a></p>
Mikiko<p>The tools we have today are better than the ones we had before and this is especially true in the <a href="https://data-folks.masto.host/tags/mlops" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlops</span></a> world. We have more options than ever before (cc: MAD Turck Landscape) but confusion is just as high as it ever was.</p><p><a href="https://data-folks.masto.host/tags/mlops" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlops</span></a> <a href="https://data-folks.masto.host/tags/productionml" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>productionml</span></a> <a href="https://data-folks.masto.host/tags/mlengineering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlengineering</span></a> <a href="https://data-folks.masto.host/tags/oss" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>oss</span></a> <a href="https://data-folks.masto.host/tags/devtools" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>devtools</span></a> <a href="https://data-folks.masto.host/tags/python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>python</span></a></p>
Mikiko<p>Having <a href="https://data-folks.masto.host/tags/DataScientists" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataScientists</span></a> Build Infrastructure &amp; Developing Models At The Same Time Is A Terrible Anti-Pattern We’re Addicted To. </p><p>Esp at comps that aren’t early stage -- correlated w/ a lack of technical DS leadership, poor infra design, and lack of organizational alignment. </p><p>Really shows how the difference between success &amp; failure isn’t technology choices but good project management &amp; strategic leadership around platforms.</p><p><a href="https://data-folks.masto.host/tags/mlops" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlops</span></a> <a href="https://data-folks.masto.host/tags/mlengineering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlengineering</span></a> <a href="https://data-folks.masto.host/tags/mlplatforms" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlplatforms</span></a> <a href="https://data-folks.masto.host/tags/datascience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>datascience</span></a></p>
Mikiko<p>👉🏻 Online Inference =/= Streaming</p><p>We're all aware of this right? That they're not the same thing?</p><p><a href="https://data-folks.masto.host/tags/mlops" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlops</span></a> <a href="https://data-folks.masto.host/tags/mlengineering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlengineering</span></a> <a href="https://data-folks.masto.host/tags/datascience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>datascience</span></a> <a href="https://data-folks.masto.host/tags/dataengineering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dataengineering</span></a> <a href="https://data-folks.masto.host/tags/productionml" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>productionml</span></a> <a href="https://data-folks.masto.host/tags/mlsystems" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlsystems</span></a> <a href="https://data-folks.masto.host/tags/systemdesign" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>systemdesign</span></a></p>
Mikiko<p>🤔 Rather than trying to get rid of the <a href="https://data-folks.masto.host/tags/datascientist" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>datascientist</span></a> title, maybe we just treat it as an abstract class and continue on our merry ways? </p><p><a href="https://data-folks.masto.host/tags/datascience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>datascience</span></a> <a href="https://data-folks.masto.host/tags/dataengineering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dataengineering</span></a> <a href="https://data-folks.masto.host/tags/mlops" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlops</span></a> <a href="https://data-folks.masto.host/tags/mlengineering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlengineering</span></a> <a href="https://data-folks.masto.host/tags/ai" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ai</span></a> <a href="https://data-folks.masto.host/tags/career" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>career</span></a> <a href="https://data-folks.masto.host/tags/data" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>data</span></a></p>
Mikiko<p>🤔To bootcamp or not to bootcamp? </p><p>Like all annoying senior devs, my answer is going to be: "It depends". </p><p>I breakdown what consider when choosing the <a href="https://data-folks.masto.host/tags/bootcamp" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>bootcamp</span></a> route for <a href="https://data-folks.masto.host/tags/datascience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>datascience</span></a> (but advice good for other bootcamps like <a href="https://data-folks.masto.host/tags/dataengineering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dataengineering</span></a> <a href="https://data-folks.masto.host/tags/mlengineering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlengineering</span></a>, etc) </p><p>#🐘 <a href="https://t.co/sTiiwWOB7D" rel="nofollow noopener" target="_blank"><span class="invisible">https://</span><span class="">t.co/sTiiwWOB7D</span><span class="invisible"></span></a></p>
Mikiko<p>If the answer is similar to:<br>1️⃣ ASAP<br>2️⃣ Minimal<br>3️⃣ Divorced<br>4️⃣ We can't<br>5️⃣ Less than 5</p><p>Then your first step shouldn't be building an ML platform, it should be developing models or ML-drive product features using the simplest, tried &amp; true patterns possible.</p><p><a href="https://data-folks.masto.host/tags/mlops" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlops</span></a> <a href="https://data-folks.masto.host/tags/mlplatform" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlplatform</span></a> <a href="https://data-folks.masto.host/tags/datascience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>datascience</span></a> <a href="https://data-folks.masto.host/tags/mlengineering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlengineering</span></a> <a href="https://data-folks.masto.host/tags/platformengineering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>platformengineering</span></a> <a href="https://data-folks.masto.host/tags/dataengineering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dataengineering</span></a> <a href="https://data-folks.masto.host/tags/ai" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ai</span></a> <a href="https://data-folks.masto.host/tags/mlinproduction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlinproduction</span></a></p>
Tim Kellogg<p>there’s a lot of really cool stuff in <a href="https://hachyderm.io/tags/MLEngineering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MLEngineering</span></a> that amounts to “train another model”. like using <a href="https://hachyderm.io/tags/SHAP" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SHAP</span></a> to automate feature selection (first you have to train a model though). or <a href="https://hachyderm.io/tags/ConceptSHAP" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ConceptSHAP</span></a> where you train simple linear models on the output of each neural net layer. or anomaly detection, or autoencoders, or...</p>
Mikiko<p>😳 My talk proposal to the <a href="https://data-folks.masto.host/tags/mlops" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlops</span></a> track was accepted to <a href="https://data-folks.masto.host/tags/DataCouncilAustin" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataCouncilAustin</span></a> 2023 🤯 </p><p>🎉 What an exciting way to start the year! 😃</p><p>Looking forward to connecting with folks in Austin from March 28-30th on <a href="https://data-folks.masto.host/tags/mlops" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlops</span></a> <a href="https://data-folks.masto.host/tags/productionml" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>productionml</span></a> <a href="https://data-folks.masto.host/tags/mlengineering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mlengineering</span></a> <a href="https://data-folks.masto.host/tags/productiondatascience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>productiondatascience</span></a> <a href="https://data-folks.masto.host/tags/DataCouncilAustin2023" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataCouncilAustin2023</span></a> <a href="https://data-folks.masto.host/tags/datacouncil" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>datacouncil</span></a> </p><p>Please feel free to connect with me on LI if you're attending or presenting! <br><a href="https://www.linkedin.com/in/mikikobazeley/" rel="nofollow noopener" target="_blank"><span class="invisible">https://www.</span><span class="">linkedin.com/in/mikikobazeley/</span><span class="invisible"></span></a></p>