Dr Mircea Zloteanu ☀️ 🌊🌴<p><a href="https://mastodon.social/tags/statstab" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>statstab</span></a> #346 Jeffreys-Lindley paradox</p><p>Thoughts: I like this short explanation of the "paradox" of why frequentist and bayesian inference can differ.</p><p><a href="https://mastodon.social/tags/paradox" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>paradox</span></a> <a href="https://mastodon.social/tags/frequentist" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>frequentist</span></a> <a href="https://mastodon.social/tags/bayesian" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>bayesian</span></a> <a href="https://mastodon.social/tags/inference" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>inference</span></a> <a href="https://mastodon.social/tags/bayesfactor" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>bayesfactor</span></a> <a href="https://mastodon.social/tags/pvalue" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>pvalue</span></a> <a href="https://mastodon.social/tags/explanation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>explanation</span></a></p><p><a href="https://michael-franke.github.io/intro-data-analysis/jeffreys-lindley-paradox.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">michael-franke.github.io/intro</span><span class="invisible">-data-analysis/jeffreys-lindley-paradox.html</span></a></p>