fosstodon.org is one of the many independent Mastodon servers you can use to participate in the fediverse.
Fosstodon is an invite only Mastodon instance that is open to those who are interested in technology; particularly free & open source software. If you wish to join, contact us for an invite.

Administered by:

Server stats:

8.7K
active users

#condensedmatter

0 posts0 participants0 posts today
MatMat<p>New preprint: <a href="https://arxiv.org/abs/2509.07785" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">arxiv.org/abs/2509.07785</span><span class="invisible"></span></a></p><p>We present an implementation of AD-DFPT, a unification of <a href="https://social.epfl.ch/tags/automaticdifferentiation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>automaticdifferentiation</span></a> with classical <a href="https://social.epfl.ch/tags/dfpt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dfpt</span></a> response techniques for <a href="https://social.epfl.ch/tags/densityfunctionaltheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>densityfunctionaltheory</span></a> (<a href="https://social.epfl.ch/tags/dft" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dft</span></a>). We demonstrate its use for <a href="https://social.epfl.ch/tags/property" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>property</span></a> predition, <a href="https://social.epfl.ch/tags/uncertainty" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>uncertainty</span></a> propagation, design of new <a href="https://social.epfl.ch/tags/materials" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>materials</span></a> as well as the <a href="https://social.epfl.ch/tags/machinelearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>machinelearning</span></a> of new <a href="https://social.epfl.ch/tags/dft" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dft</span></a> models.</p><p><a href="https://social.epfl.ch/tags/condensedmatter" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>condensedmatter</span></a> <a href="https://social.epfl.ch/tags/planewave" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>planewave</span></a> <a href="https://social.epfl.ch/tags/response" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>response</span></a> <a href="https://social.epfl.ch/tags/physics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>physics</span></a> <a href="https://social.epfl.ch/tags/simulation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>simulation</span></a> <a href="https://social.epfl.ch/tags/computation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>computation</span></a></p>
Michael Herbst<p>This week the <span class="h-card" translate="no"><a href="https://social.epfl.ch/@MatMat" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>MatMat</span></a></span> group takes part in the <a href="https://social.epfl.ch/tags/psik" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>psik</span></a> conference (<a href="https://www.psik2025.net/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="">psik2025.net/</span><span class="invisible"></span></a>) at <a href="https://social.epfl.ch/tags/epfl" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>epfl</span></a><br>with plentey of cutting-edge talks on <a href="https://social.epfl.ch/tags/materials" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>materials</span></a> <a href="https://social.epfl.ch/tags/modeling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>modeling</span></a> and simulations of <a href="https://social.epfl.ch/tags/condensedmatter" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>condensedmatter</span></a>.</p><p>My contribution has been a short talk on <a href="https://social.epfl.ch/tags/error" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>error</span></a> quantification and propagation in <a href="https://social.epfl.ch/tags/densityfunctionaltheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>densityfunctionaltheory</span></a> simulations leveraging the built-in <a href="https://social.epfl.ch/tags/automaticdifferentiation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>automaticdifferentiation</span></a> framework of the <a href="https://social.epfl.ch/tags/dftk" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dftk</span></a> code for automatic<br>gradient computation.</p><p>Slides: <a href="https://michael-herbst.com/talks/2025.08.25_Psik.pdf" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">michael-herbst.com/talks/2025.</span><span class="invisible">08.25_Psik.pdf</span></a></p>
Academic Europe<p>Job - Alert</p><p>Fully funded PhD Positions (Doctoral Researcher m/f/d) | Condensed Matter Science</p><p>👉🏼 Germany, Stuttgart</p><p>Deadline: 2025-09-30</p><p><a href="https://www.academiceurope.com/ads/fully-funded-phd-positions-doctoral-researcher-m-f-d-condensed-matter-science/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">academiceurope.com/ads/fully-f</span><span class="invisible">unded-phd-positions-doctoral-researcher-m-f-d-condensed-matter-science/</span></a></p><p><a href="https://mstdn.business/tags/hiring" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>hiring</span></a> <a href="https://mstdn.business/tags/PhD" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PhD</span></a> <a href="https://mstdn.business/tags/Physics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Physics</span></a> <a href="https://mstdn.business/tags/CondensedMatter" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CondensedMatter</span></a> <a href="https://mstdn.business/tags/QuantumScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>QuantumScience</span></a> <a href="https://mstdn.business/tags/MaterialScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MaterialScience</span></a> <a href="https://mstdn.business/tags/chemistry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>chemistry</span></a> <a href="https://mstdn.business/tags/mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathematics</span></a> <a href="https://mstdn.business/tags/computerscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>computerscience</span></a></p>
HGPU group<p>Accelerated discovery and design of Fe-Co-Zr magnets with tunable magnetic anisotropy through machine learning and parallel computing</p><p><a href="https://mast.hpc.social/tags/CUDA" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CUDA</span></a> <a href="https://mast.hpc.social/tags/Physics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Physics</span></a> <a href="https://mast.hpc.social/tags/MaterialsScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MaterialsScience</span></a> <a href="https://mast.hpc.social/tags/CondensedMatter" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CondensedMatter</span></a> <a href="https://mast.hpc.social/tags/MachineLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MachineLearning</span></a> <a href="https://mast.hpc.social/tags/ML" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ML</span></a> <a href="https://mast.hpc.social/tags/Package" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Package</span></a></p><p><a href="https://hgpu.org/?p=30007" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">hgpu.org/?p=30007</span><span class="invisible"></span></a></p>
Michael Herbst<p>As part of the <a href="https://social.epfl.ch/tags/cecam" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>cecam</span></a> workshop on perspectives of the atomistic simulation environment (<a href="https://social.epfl.ch/tags/ase" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ase</span></a>) I delivered a talk on our <a href="https://social.epfl.ch/tags/materials" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>materials</span></a> <a href="https://social.epfl.ch/tags/modeling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>modeling</span></a> ecosystem juliamolsim.org written in the <a href="https://social.epfl.ch/tags/julialang" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>julialang</span></a><br>programming language and showed some examples: <a href="https://social.epfl.ch/tags/automaticdifferentiation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>automaticdifferentiation</span></a> through the simulation pipeline, seamless <a href="https://social.epfl.ch/tags/gpu" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>gpu</span></a> usage, <a href="https://social.epfl.ch/tags/error" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>error</span></a> propagation and many more</p><p>Slides: <a href="https://michael-herbst.com/talks/2025.06.23_ASE_perspectives.pdf" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">michael-herbst.com/talks/2025.</span><span class="invisible">06.23_ASE_perspectives.pdf</span></a><br><a href="https://social.epfl.ch/tags/julialang" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>julialang</span></a> demo: <a href="https://michael-herbst.com/talks/2025.06.23_ASE_perspectives_demo.tar.gz" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">michael-herbst.com/talks/2025.</span><span class="invisible">06.23_ASE_perspectives_demo.tar.gz</span></a></p><p><a href="https://social.epfl.ch/tags/dftk" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dftk</span></a> <a href="https://social.epfl.ch/tags/densityfunctionaltheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>densityfunctionaltheory</span></a> <a href="https://social.epfl.ch/tags/condensedmatter" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>condensedmatter</span></a> <a href="https://social.epfl.ch/tags/planewave" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>planewave</span></a> <a href="https://social.epfl.ch/tags/simulation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>simulation</span></a></p>
Michael Herbst<p>Released <a href="https://social.epfl.ch/tags/dftk" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dftk</span></a> version 0.7.14: <a href="https://dftk.org/releases" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">dftk.org/releases</span><span class="invisible"></span></a> with another round of <a href="https://social.epfl.ch/tags/performance" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>performance</span></a> improvements for <a href="https://social.epfl.ch/tags/nvidia" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>nvidia</span></a> GPUs as well as a faster algorithm for response calculations based on our recent <a href="https://social.epfl.ch/tags/preprint" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>preprint</span></a> <a href="http://arxiv.org/abs/2505.02319" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">http://</span><span class="">arxiv.org/abs/2505.02319</span><span class="invisible"></span></a>.</p><p><a href="https://social.epfl.ch/tags/densityfunctionaltheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>densityfunctionaltheory</span></a> <a href="https://social.epfl.ch/tags/condensedmatter" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>condensedmatter</span></a> <a href="https://social.epfl.ch/tags/dfpt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dfpt</span></a> <a href="https://social.epfl.ch/tags/response" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>response</span></a> <a href="https://social.epfl.ch/tags/physics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>physics</span></a> <a href="https://social.epfl.ch/tags/simulation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>simulation</span></a> <a href="https://social.epfl.ch/tags/planewave" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>planewave</span></a></p>
Viðar Guðmundsson<p>My early Linux user history</p><p>Here is a photo of the Linux distributions I used before the operating system was available through the internet. The first one was DLD (Deutsche Linux Distribution). </p><p>All through this time I only used happily Linux for all my activities. Linux was a real revolution for my work close to computational and condensed matter physics. It totally changed the access to computational infrastructure </p><p><a href="https://mastodon.social/tags/linux" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>linux</span></a> <a href="https://mastodon.social/tags/dld" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dld</span></a> <a href="https://mastodon.social/tags/opensuse" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>opensuse</span></a> <a href="https://mastodon.social/tags/physics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>physics</span></a> <a href="https://mastodon.social/tags/condensedmatter" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>condensedmatter</span></a> <a href="https://mastodon.social/tags/computational" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>computational</span></a></p>
MatMat<p>New publication <a href="https://doi.org/10.1103/PhysRevB.111.205143" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">doi.org/10.1103/PhysRevB.111.2</span><span class="invisible">05143</span></a></p><p>New algorithm for the <a href="https://social.epfl.ch/tags/inverseproblem" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>inverseproblem</span></a> of Kohn-Sham <a href="https://social.epfl.ch/tags/densityfunctionaltheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>densityfunctionaltheory</span></a> (<a href="https://social.epfl.ch/tags/dft" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dft</span></a>), i.e. to find the <a href="https://social.epfl.ch/tags/potential" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>potential</span></a> from the <a href="https://social.epfl.ch/tags/density" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>density</span></a>.</p><p>Outcome of a fun collaboration of <span class="h-card" translate="no"><a href="https://social.epfl.ch/@herbst" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>herbst</span></a></span> with the group of Andre Laestadius at <a href="https://social.epfl.ch/tags/oslomet" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>oslomet</span></a> to derive first mathematical error bounds for this problem</p><p><a href="https://social.epfl.ch/tags/condensedmatter" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>condensedmatter</span></a> <a href="https://social.epfl.ch/tags/planewave" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>planewave</span></a> <a href="https://social.epfl.ch/tags/numericalanalysis" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>numericalanalysis</span></a> <a href="https://social.epfl.ch/tags/convexanalysis" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>convexanalysis</span></a> <a href="https://social.epfl.ch/tags/dftk" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dftk</span></a></p>
QUINTO project<p>We just submitted the first QUINTO draft of paper to a journal. Let's see what the editors and reviewers think.</p><p>The paper is about fractional quantum Hall states in atomic arrays. Here is the popular summary we submitted alongside:</p><p>"When atoms are arranged in a regular, dense array, their response to light can change drastically. The photons can bounce between the atoms, getting absorbed and re-emitted again and interfering with themselves. This field of quantum optics with atomic arrays is of active interest. Due to interactions, the limit of many absorbed photons generally remains hard to model, but at the same time may result in new, counterintuitive physical phenomena. In the search for ways to understand such systems, we can look for analogies in condensed matter physics, where the behavior of many interacting particles (electrons in this case) has been studied for decades. Here, we report on finding such an analogy between the behavior of few photons absorbed by an array and peculiar many-electron quantum states known as fractional quantum Hall (FQH) states. FQH states display many counterintuitive properties -- for example the electrons behave like they decomposed into pieces (e.g. "one third of an electron"), even though we know that in reality they are indivisible. Now we know that photons in arrays can behave similarly."</p><p>[1/2]</p><p><a href="https://fediscience.org/tags/physics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>physics</span></a> <a href="https://fediscience.org/tags/science" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>science</span></a> <a href="https://fediscience.org/tags/CondensedMatterPhysics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CondensedMatterPhysics</span></a> <a href="https://fediscience.org/tags/CondensedMatter" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CondensedMatter</span></a> <a href="https://fediscience.org/tags/condMat" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>condMat</span></a> <a href="https://fediscience.org/tags/QuantumOptics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>QuantumOptics</span></a> <a href="https://fediscience.org/tags/Quantum" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Quantum</span></a> <span class="h-card" translate="no"><a href="https://a.gup.pe/u/physics" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>physics</span></a></span></p>
QUINTO project<p>We just came back from the "Light-Matter Interactions and Collective Effects" workshop in Paris. We heard some interesting talks on how quantum emitters (not only atoms, but also e.g. molecules and quantum dots) interact with each other and how people try to arrange them into arrays (like, putting chains of molecules inside a carbon nanotube). Darrick (my boss and supervisor of the project) gave a talk on spin liquids, while I presented a poster on fractional quantum Hall states in atom arrays. </p><p><a href="https://fediscience.org/tags/physics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>physics</span></a> <a href="https://fediscience.org/tags/quantum" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>quantum</span></a> <a href="https://fediscience.org/tags/science" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>science</span></a> <a href="https://fediscience.org/tags/QuantumOptics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>QuantumOptics</span></a> <a href="https://fediscience.org/tags/CondensedMatter" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CondensedMatter</span></a> <a href="https://fediscience.org/tags/CondMat" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CondMat</span></a></p>
ℵ₀ 🏳️‍⚧️🏴‍☠️<p><a href="https://youtu.be/qqjlcuEHUlg" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">youtu.be/qqjlcuEHUlg</span><span class="invisible"></span></a></p><p><a href="https://mastodon.social/tags/Quantum" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Quantum</span></a> <a href="https://mastodon.social/tags/computation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>computation</span></a> from <a href="https://mastodon.social/tags/spacetime" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>spacetime</span></a> defect <a href="https://mastodon.social/tags/networks" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>networks</span></a> | <a href="https://mastodon.social/tags/MargaritaDavydova" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MargaritaDavydova</span></a> (<a href="https://mastodon.social/tags/Caltech" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Caltech</span></a>)</p><p>“Recorded as part of the Generalized Symmetries: <a href="https://mastodon.social/tags/HighEnergy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>HighEnergy</span></a>, <a href="https://mastodon.social/tags/CondensedMatter" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CondensedMatter</span></a> and <a href="https://mastodon.social/tags/Mathematics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Mathematics</span></a> KITP conference from Apr 7, 2025 - Apr 10, 2025 at the Kavli Institute for <a href="https://mastodon.social/tags/TheoreticalPhysics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TheoreticalPhysics</span></a> on the <a href="https://mastodon.social/tags/UCSantaBarbara" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>UCSantaBarbara</span></a> campus.”</p><p><a href="https://mastodon.social/tags/UCSB" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>UCSB</span></a> <br><a href="https://mastodon.social/tags/physics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>physics</span></a> <a href="https://mastodon.social/tags/computing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>computing</span></a> <a href="https://mastodon.social/tags/qubits" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>qubits</span></a> <a href="https://mastodon.social/tags/topologicaldefects" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>topologicaldefects</span></a> <a href="https://mastodon.social/tags/lagrangian" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>lagrangian</span></a> </p><p>more at: <a href="https://www.kitp.ucsb.edu/activities/gensym-c25" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">kitp.ucsb.edu/activities/gensy</span><span class="invisible">m-c25</span></a></p>
José - Luis Gutiérrez Villanue<p>Superconductivity = zero resistance ⚡</p><p>New research digs into Cooper pair density and how it drives the superconducting state.</p><p>Big implications for quantum tech + energy.</p><p>🔗 <a href="https://phys.org/news/2025-03-superconducting-state-cooper-pair-density.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">phys.org/news/2025-03-supercon</span><span class="invisible">ducting-state-cooper-pair-density.html</span></a></p><p><a href="https://mastodon.social/tags/Superconductivity" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Superconductivity</span></a> <a href="https://mastodon.social/tags/QuantumPhysics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>QuantumPhysics</span></a> <a href="https://mastodon.social/tags/CondensedMatter" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CondensedMatter</span></a> <a href="https://mastodon.social/tags/Physics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Physics</span></a></p>
QUINTO project<p>Fractional quantum Hall states in atom arrays</p><p>Our second approach to create a topological order in atom arrays is to focus on a different kind of topological order: fractional quantum Hall (FQH) states. These were first discovered in condensed matter. It is possible to confine electrons to move in two-dimensions only (such as in the 2D material graphene or in so-called metal-oxide-semiconductor transistors) and then put them in a strong perpendicular magnetic fields. The electrons then move in circles (so-called “cyclotron motion”), but since they are quantum objects, only some values of radius are allowed. Thus, the energy can only take certain fixed values (we call them “Landau levels”). There are however different possibilities of an electron having the same energy, because the center of the orbit can be located in different places – we say that Landau levels are “degenerate”. And when there is degeneracy, the interaction between electrons becomes very important. Without interactions, there are many possible ways of arranging electrons within a Landau level, all with the same energy. In the presence of interactions, some arrangements become preferred – and it turns out those correspond to topological orders known as the FQH states. Such systems host anyons which look like fractions of an electron – like somehow the electron split into several parts. </p><p>[1/2]</p><p><a href="https://fediscience.org/tags/Physics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Physics</span></a> <a href="https://fediscience.org/tags/science" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>science</span></a> <a href="https://fediscience.org/tags/TopologicalOrder" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TopologicalOrder</span></a> <a href="https://fediscience.org/tags/Quantum" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Quantum</span></a> <a href="https://fediscience.org/tags/QuantumOptics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>QuantumOptics</span></a> <a href="https://fediscience.org/tags/CondensedMatter" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CondensedMatter</span></a> <a href="https://fediscience.org/tags/CondMat" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CondMat</span></a> <a href="https://fediscience.org/tags/cond_mat" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>cond_mat</span></a> <a href="https://fediscience.org/tags/QuantumHall" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>QuantumHall</span></a></p>
Beilstein-Institut<p>📢 Meet our Managing Editor Dr. BarbaraHissa <span class="h-card" translate="no"><a href="https://mstdn.science/@BarbaraHissa" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>BarbaraHissa</span></a></span> visits the DPG Spring Meeting of the Condensed Matter Section (SKM) in Regensburg next week from 📅 March 17 to 19, 2025.</p><p>➡️ <a href="https://www.beilstein-journals.org/bjnano/news/QRB4PYY6ROZZMP6GW5XLW627JQ?M=y" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">beilstein-journals.org/bjnano/</span><span class="invisible">news/QRB4PYY6ROZZMP6GW5XLW627JQ?M=y</span></a></p><p><a href="https://hessen.social/tags/CondensedMatter" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CondensedMatter</span></a> <a href="https://hessen.social/tags/DPGR25" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DPGR25</span></a> <a href="https://hessen.social/tags/EDITOURS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>EDITOURS</span></a> <a href="https://hessen.social/tags/BJNANO" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>BJNANO</span></a> 💎 🔓</p>
QUINTO project<p>Spin liquids in Rydberg atom arrays in cavities</p><p>What is our proposal for the realization of spin liquid?</p><p>We consider an atom array held by optical tweezers and placed in an optical cavity. The cavity consists of two mirrors placed on the opposite sides of the system. The photons which normally would escape the system (at least some of them) will bounce back and forth between the mirrors. In such a configuration, the distance between atoms becomes irrelevant and the probability of an excitation hopping between any two atoms becomes the same.</p><p>The second ingredient is that the excited state of the atoms would be a Rydberg state – a very high-energy state where the electron is far away from the nucleus. The atoms in Rydberg states interact strongly by van der Waals forces. In our case it would mean that two excitations will have much higher energy when they are at nearest-neighboring atoms than if they are far away.</p><p>This setting seems much different from usual crystals. In the typical material, the electrons are much more likely to hop between nearest-neighboring atoms than far-away ones, while in our case they would be able hop arbitrarily far with the same probability. But it turns out that there is in equivalence between such “infinite-range hopping + Rydberg” model and the Heisenberg model, commonly used to describe magnets, including the frustrated ones.<br>[1/2]<br><a href="https://fediscience.org/tags/Physics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Physics</span></a> <a href="https://fediscience.org/tags/Quantum" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Quantum</span></a> <a href="https://fediscience.org/tags/TopologicalOrder" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TopologicalOrder</span></a> <a href="https://fediscience.org/tags/CondMat" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CondMat</span></a> <a href="https://fediscience.org/tags/CondensedMatter" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CondensedMatter</span></a> <a href="https://fediscience.org/tags/QuantumOptics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>QuantumOptics</span></a> <a href="https://fediscience.org/tags/Science" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Science</span></a></p>
Beilstein-Institut<p>📢 Our Managing Editor Dr. BarbaraHissa <span class="h-card" translate="no"><a href="https://mstdn.science/@BarbaraHissa" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>BarbaraHissa</span></a></span> visits the DPG Spring Meeting of the Condensed Matter Section (SKM). Meet her in Regensburg, Germany, from 📅 March 17 to 19, 2025.</p><p>➡️ <a href="https://www.beilstein-journals.org/bjnano/news/QRB4PYY6ROZZMP6GW5XLW627JQ?M=y" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">beilstein-journals.org/bjnano/</span><span class="invisible">news/QRB4PYY6ROZZMP6GW5XLW627JQ?M=y</span></a></p><p><a href="https://hessen.social/tags/CondensedMatter" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CondensedMatter</span></a> <a href="https://hessen.social/tags/DPGR25" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DPGR25</span></a> <a href="https://hessen.social/tags/EDITOURS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>EDITOURS</span></a> <a href="https://hessen.social/tags/BJNANO" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>BJNANO</span></a> 💎 🔓</p>
Paul Houle<p>🐐 Breaking the pattern: How disorder toughens materials</p><p><a href="https://techxplore.com/news/2025-02-pattern-disorder-toughens-materials.html" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">techxplore.com/news/2025-02-pa</span><span class="invisible">ttern-disorder-toughens-materials.html</span></a></p><p><a href="https://mastodon.social/tags/materials" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>materials</span></a> <a href="https://mastodon.social/tags/metamaterials" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>metamaterials</span></a> <a href="https://mastodon.social/tags/research" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>research</span></a> <a href="https://mastodon.social/tags/condensedmatter" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>condensedmatter</span></a> <a href="https://mastodon.social/tags/disorder" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>disorder</span></a></p>
Enabla<p>The Nordita Summer School on Quantum Chaos, Dissipation &amp; Information is now in <a href="https://mathstodon.xyz/tags/OpenAccess" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OpenAccess</span></a> on Enabla: <a href="https://enabla.com/set/192" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">enabla.com/set/192</span><span class="invisible"></span></a>.</p><p>📚 The complete list of lectures:</p><p>• "Introduction to random-matrix theory, Anderson localisation, and random quantum circuits" by Prof. John Chalker, University of Oxford, Department of Physics: <a href="https://enabla.com/set/192/pub/942/about" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">enabla.com/set/192/pub/942/abo</span><span class="invisible">ut</span></a></p><p>• "THz Dynamics Studies of Quantum Materials" by Prof. Dr. Elsa Abreu (Elsa A.), ETH Zürich: <a href="https://enabla.com/set/192/pub/1170/about" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">enabla.com/set/192/pub/1170/ab</span><span class="invisible">out</span></a></p><p>• "On Quantum Chaos in Open Systems" by Prof. Karol Zyczkowski, Jagiellonian University: <a href="https://enabla.com/set/192/pub/742/about" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">enabla.com/set/192/pub/742/abo</span><span class="invisible">ut</span></a></p><p>• "Universal Dynamics of Monitored Many-Body Quantum Systems" by Prof. Andrea De Luca, University of Cergy-Pontoise: <a href="https://enabla.com/set/192/pub/1171/about" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">enabla.com/set/192/pub/1171/ab</span><span class="invisible">out</span></a></p><p>• "Quantum Many-Body Dynamics with Quantum Circuits" by Prof. Bruno Bertini, University of Birmingham: <a href="https://enabla.com/set/192/pub/1167/about" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">enabla.com/set/192/pub/1167/ab</span><span class="invisible">out</span></a></p><p>• "Localization and Thermalization via the Information Lattice" by Prof. Jens H Bardarson, KTH Royal Institute of Technology: <a href="https://enabla.com/set/192/pub/1116/about" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">enabla.com/set/192/pub/1116/ab</span><span class="invisible">out</span></a></p><p>• "High-Dimensional Random Landscapes and Glassy Dynamics" by Dr. Valentina Ros, LPTMS - Laboratory of Theoretical Physics and Statistical Models: <a href="https://enabla.com/set/192/pub/1169/about" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">enabla.com/set/192/pub/1169/ab</span><span class="invisible">out</span></a></p><p>• "New Physics in Driven Quantum Materials" by Prof. Andrea Cavalleri, MPI for the Structure and Dynamics of Matter: <a href="https://enabla.com/set/192/pub/1119/about" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">enabla.com/set/192/pub/1119/ab</span><span class="invisible">out</span></a></p><p>• "Random quantum channels and their spectral properties" by Prof. Sergey Denisov, OsloMet – Oslo Metropolitan University: <a href="https://enabla.com/set/192/pub/1122/about" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">enabla.com/set/192/pub/1122/ab</span><span class="invisible">out</span></a></p><p>🎥 Ask your questions, engage in discussions, and connect with other researchers: <a href="https://enabla.com/set/192" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">enabla.com/set/192</span><span class="invisible"></span></a></p><p><a href="https://mathstodon.xyz/tags/QuantumChaos" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>QuantumChaos</span></a><br><a href="https://mathstodon.xyz/tags/QuantumInformation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>QuantumInformation</span></a> <a href="https://mathstodon.xyz/tags/CondensedMatter" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CondensedMatter</span></a> <a href="https://mathstodon.xyz/tags/ManyBodyPhysics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ManyBodyPhysics</span></a> <a href="https://mathstodon.xyz/tags/OpenQuantumSystems" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OpenQuantumSystems</span></a></p>
QUINTO project<p>Atom arrays</p><p>Scientists have developed ways of trapping atoms and arranging them in space using laser beams (such as “optical tweezers” and “optical lattices”). What can one do using these tools? One possibility is arranging the atoms in a regular array. </p><p>Why people find it interesting? It was found that such systems have properties much different than clouds of atoms randomly flying around. The lattice structure changes how the atoms emit and absorb light. This is because light emitted from different atoms can interfere, and a regular structure of array works like a diffraction grating. This happens especially if the distance between atoms is smaller than one wavelength.</p><p>For example, a 1D chain of atoms in a certain state emits light only on its ends. And a 2D array can act as a perfect mirror (for certain wavelength), even though it is only one atom thin.</p><p>It was theoretically shown that these effects can be used to boost the efficiency of optical quantum devices such as memories and gates, which may be used in the future for a “quantum internet” and quantum computers. </p><p><a href="https://fediscience.org/tags/Physics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Physics</span></a> <a href="https://fediscience.org/tags/Science" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Science</span></a> <a href="https://fediscience.org/tags/Quantum" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Quantum</span></a> <a href="https://fediscience.org/tags/QuantumOptics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>QuantumOptics</span></a> <a href="https://fediscience.org/tags/atoms" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>atoms</span></a> <a href="https://fediscience.org/tags/CondensedMatter" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CondensedMatter</span></a> <a href="https://fediscience.org/tags/CondMat" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CondMat</span></a> </p><p>[1/2]</p>
Claudio Attaccalite<p>I closed my SlideShare account, now all my presentations/lectures are available in LibreOffice format on my webpage:<br><a href="https://mastodon.social/tags/slideshare" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>slideshare</span></a> <a href="https://mastodon.social/tags/lectures" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>lectures</span></a> <a href="https://mastodon.social/tags/physics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>physics</span></a> <a href="https://mastodon.social/tags/condensedmatter" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>condensedmatter</span></a> <br>www.attaccalite.com/presentations/</p>