fosstodon.org is one of the many independent Mastodon servers you can use to participate in the fediverse.
Fosstodon is an invite only Mastodon instance that is open to those who are interested in technology; particularly free & open source software. If you wish to join, contact us for an invite.

Administered by:

Server stats:

8.8K
active users

#compneuro

3 posts2 participants0 posts today
Fabrizio Musacchio<p>And as an added bonus: Dileep George, one of the authors of the paper, just shared a <a href="https://sigmoid.social/tags/JupyterNotebook" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>JupyterNotebook</span></a> demo 🐍📔. You can explore the <a href="https://sigmoid.social/tags/CSCG" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CSCG</span></a> model, visualize <a href="https://sigmoid.social/tags/PlaceFields" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PlaceFields</span></a>, and inspect the learned <a href="https://sigmoid.social/tags/latent" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>latent</span></a> <a href="https://sigmoid.social/tags/graphs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>graphs</span></a> 📈 Just try it out, it's great fun 👌</p><p>🌍 <a href="https://colab.research.google.com/drive/1kgjuoz_Noo7uV87StSbW7T8-IBQmPOLE?usp=sharing#scrollTo=7jnInNH7RUAX" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">colab.research.google.com/driv</span><span class="invisible">e/1kgjuoz_Noo7uV87StSbW7T8-IBQmPOLE?usp=sharing#scrollTo=7jnInNH7RUAX</span></a></p><p><a href="https://sigmoid.social/tags/Hippocampus" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Hippocampus</span></a> <a href="https://sigmoid.social/tags/CognitiveMaps" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CognitiveMaps</span></a> <a href="https://sigmoid.social/tags/CSCG" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CSCG</span></a> <a href="https://sigmoid.social/tags/Neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Neuroscience</span></a> <a href="https://sigmoid.social/tags/ComputationalModeling" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ComputationalModeling</span></a> <a href="https://sigmoid.social/tags/CompNeuro" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CompNeuro</span></a></p>
Fabrizio Musacchio<p><span class="h-card" translate="no"><a href="https://sigmoid.social/@juangallego" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>juangallego</span></a></span> just published a review on how <a href="https://sigmoid.social/tags/NeuralManifolds" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NeuralManifolds</span></a> go beyond being a convenient data representation – they reflect fundamental constraints on <a href="https://sigmoid.social/tags/NeuralPopulation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NeuralPopulation</span></a> activity. Originating in mammalian BCI work (2014), these low-dimensional trajectories shape what neural patterns are learnable and expressible.</p><p>🌍 <a href="https://www.nature.com/articles/s41583-025-00919-0.epdf" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">nature.com/articles/s41583-025</span><span class="invisible">-00919-0.epdf</span></a></p><p><a href="https://sigmoid.social/tags/CompNeuro" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CompNeuro</span></a> <a href="https://sigmoid.social/tags/SystemsNeuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SystemsNeuroscience</span></a> <a href="https://sigmoid.social/tags/PopulationDynamics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PopulationDynamics</span></a> <a href="https://sigmoid.social/tags/Neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Neuroscience</span></a></p>
Fabrizio Musacchio<p>Mouse retrosplenial cortex encodes spatial hypotheses with well-behaved recurrent dynamics, which can combine these hypotheses with incoming information to resolve ambiguities</p><p><a href="https://www.nature.com/articles/s41593-025-01944-z" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">nature.com/articles/s41593-025</span><span class="invisible">-01944-z</span></a><br><a href="https://sigmoid.social/tags/Neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Neuroscience</span></a> <a href="https://sigmoid.social/tags/CompNeuro" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CompNeuro</span></a></p>
Fabrizio Musacchio<p>New <a href="https://sigmoid.social/tags/TeachingMaterial" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TeachingMaterial</span></a> available: Functional Imaging Data Analysis – From Calcium Imaging to Network Dynamics. This course covers the entire workflow from raw <a href="https://sigmoid.social/tags/imaging" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>imaging</span></a> data to functional insights, including <a href="https://sigmoid.social/tags/SpikeInference" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SpikeInference</span></a> &amp; <a href="https://sigmoid.social/tags/PopulationAnalysis" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PopulationAnalysis</span></a>. Designed for students and for self-guided learning, with a focus on open content and reproducibility. Feel free to use and share it 🤗</p><p>🌍 <a href="https://www.fabriziomusacchio.com/blog/2025-07-13-function_image_analysis/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">fabriziomusacchio.com/blog/202</span><span class="invisible">5-07-13-function_image_analysis/</span></a> </p><p><a href="https://sigmoid.social/tags/Python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Python</span></a> <a href="https://sigmoid.social/tags/DataScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataScience</span></a> <a href="https://sigmoid.social/tags/MachineLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MachineLearning</span></a> <a href="https://sigmoid.social/tags/Neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Neuroscience</span></a> <a href="https://sigmoid.social/tags/OpenSource" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OpenSource</span></a> <a href="https://sigmoid.social/tags/calciumimaging" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>calciumimaging</span></a> <a href="https://sigmoid.social/tags/CompNeuro" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CompNeuro</span></a></p>
Dan Goodman<p>How can we test theories in neuroscience? Take a variable predicted to be important by the theory. It could fail to be observed because it's represented in some nonlinear, even distributed way. Or it could be observed but not be causal because the network is a reservoir. How can we deal with this?</p><p>Increasingly feel like this isn't a theoretical problem but a very practical one that comes up all the time. I'd be interested if anyone has seen anything practical that addresses this.</p><p><a href="https://neuromatch.social/tags/neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>neuroscience</span></a> <a href="https://neuromatch.social/tags/compneuro" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>compneuro</span></a></p>
Alessandro Torcini<p><a href="https://mastodon.social/tags/compneuro" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>compneuro</span></a> <a href="https://mastodon.social/tags/neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>neuroscience</span></a> </p><p>Here is the complete list of speakers, title of the talks and the<br>timeline of the workshop <a href="https://mastodon.social/tags/CNS2025" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CNS2025</span></a>:<br> <br><a href="https://doocn.org/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">doocn.org/</span><span class="invisible"></span></a></p><p>Population activity : the influence of cell-class identity, synaptic<br>dynamics, plasticity and adaptation</p><p>that will take place in Florence 8-9 July 2025 with 16 invited speakers</p><p>see you soon<br>S. Olmi, A. Torcini, M. Giugliano</p>
Fabrizio Musacchio<p>🧠✨ Just published – “The dynamics and geometry of choice in the premotor <a href="https://sigmoid.social/tags/cortex" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>cortex</span></a>” by Genkin et  al. shows how the <a href="https://sigmoid.social/tags/brain" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>brain</span></a> encodes <a href="https://sigmoid.social/tags/decisions" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decisions</span></a>. Using single-trial <a href="https://sigmoid.social/tags/NeuralRecordings" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NeuralRecordings</span></a>, they model <a href="https://sigmoid.social/tags/decisionmaking" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>decisionmaking</span></a> as 1D trajectories on a high-dimensional <a href="https://sigmoid.social/tags/manifold" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>manifold</span></a>.</p><p>Key findings:<br>👉 Diverse tuning curves reflect one latent decision variable<br>👉 Dynamics follow an attractor<br>👉 Geometry links sensory &amp; cognitive coding</p><p>✍️ <a href="https://www.nature.com/articles/s41586-025-09199-1" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">nature.com/articles/s41586-025</span><span class="invisible">-09199-1</span></a><br>💻 <a href="https://github.com/engellab/neuralflow" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">github.com/engellab/neuralflow</span><span class="invisible"></span></a></p><p><a href="https://sigmoid.social/tags/Neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Neuroscience</span></a> <a href="https://sigmoid.social/tags/CompNeuro" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CompNeuro</span></a></p>
Fabrizio Musacchio<p>🧠 👀 Fascinating new study: Pre-training <a href="https://sigmoid.social/tags/NeuralNetworks" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NeuralNetworks</span></a> with spontaneous retinal waves — those endogenous activity patterns in the developing eye — significantly improves motion prediction in natural scenes.</p><p>May, Dauphin &amp; Gjorgjieva show that even before <a href="https://sigmoid.social/tags/vision" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>vision</span></a>, the <a href="https://sigmoid.social/tags/brain" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>brain</span></a> may self-organize using internally generated signals.</p><p>📖 <a href="https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1012830" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">journals.plos.org/ploscompbiol</span><span class="invisible">/article?id=10.1371/journal.pcbi.1012830</span></a><br>💻 Code: <a href="https://github.com/comp-neural-circuits/pre-training-ANNs-with-retinal-waves" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">github.com/comp-neural-circuit</span><span class="invisible">s/pre-training-ANNs-with-retinal-waves</span></a></p><p><a href="https://sigmoid.social/tags/Neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Neuroscience</span></a> <a href="https://sigmoid.social/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> <a href="https://sigmoid.social/tags/ComputationalBiology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ComputationalBiology</span></a> <a href="https://sigmoid.social/tags/SelfOrganization" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SelfOrganization</span></a> <a href="https://sigmoid.social/tags/RetinalWaves" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RetinalWaves</span></a> <a href="https://sigmoid.social/tags/CompNeuro" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CompNeuro</span></a></p>
Fabrizio Musacchio<p>Recently, we discussed this insightful paper by Squadrani et al (2024) in our <a href="https://sigmoid.social/tags/JournalClub" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>JournalClub</span></a>. It explores how <a href="https://sigmoid.social/tags/astrocytes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>astrocytes</span></a> enhance <a href="https://sigmoid.social/tags/SynapticPlasticity" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SynapticPlasticity</span></a> during <a href="https://sigmoid.social/tags/ReversalLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ReversalLearning</span></a> by modulating D-serine levels, providing a <a href="https://sigmoid.social/tags/biophysical" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>biophysical</span></a> basis for dynamic <a href="https://sigmoid.social/tags/LTP" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LTP</span></a> thresholds. The findings suggest astrocytic signaling is crucial for <a href="https://sigmoid.social/tags/AdaptiveLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AdaptiveLearning</span></a>, linking <a href="https://sigmoid.social/tags/glial" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>glial</span></a> activity to <a href="https://sigmoid.social/tags/behavioral" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>behavioral</span></a> flexibility. Here’s a summary from our JC:</p><p>🌍 <a href="https://www.fabriziomusacchio.com/blog/2025-06-29-astrocyte_enhance_plasticity/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">fabriziomusacchio.com/blog/202</span><span class="invisible">5-06-29-astrocyte_enhance_plasticity/</span></a><br>📝 <a href="https://doi.org/10.1038/s42003-024-06540-8" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">doi.org/10.1038/s42003-024-065</span><span class="invisible">40-8</span></a></p><p><a href="https://sigmoid.social/tags/CompNeuro" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CompNeuro</span></a> <a href="https://sigmoid.social/tags/Neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Neuroscience</span></a></p>
Dan Goodman<p>Almost last call to register for UK neural computation conference in London July 10-11. Registration deadline is July 1st. We have some great talks and posters as well as a session on funding with ARIA.</p><p>Look forward to seeing you all there. Now click here 👇</p><p><a href="https://neuralcomputation.uk/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">neuralcomputation.uk/</span><span class="invisible"></span></a></p><p><a href="https://neuromatch.social/tags/neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>neuroscience</span></a> <a href="https://neuromatch.social/tags/compneuro" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>compneuro</span></a> <a href="https://neuromatch.social/tags/computationalneuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>computationalneuroscience</span></a></p>
Alicia Izquierdo, Ph.D.<p>📣 Preprint alert ✨New insights into the tradeoff of effort and delay costs! A collaboration with the Wikenheiser lab <a href="https://neuromatch.social/tags/neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>neuroscience</span></a> <a href="https://neuromatch.social/tags/compneuro" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>compneuro</span></a> <a href="https://www.biorxiv.org/content/10.1101/2025.06.03.657635v1" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">biorxiv.org/content/10.1101/20</span><span class="invisible">25.06.03.657635v1</span></a></p>
Fabrizio Musacchio<p>🧠 New <a href="https://sigmoid.social/tags/preprint" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>preprint</span></a>! Confavreux et al. use meta-learning to uncover thousands of diverse, local <a href="https://sigmoid.social/tags/plasticity" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>plasticity</span></a> rule quadruplets that stabilize <a href="https://sigmoid.social/tags/RecurrentSpikingNetworks" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RecurrentSpikingNetworks</span></a> — and incidentally support <a href="https://sigmoid.social/tags/memory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>memory</span></a> functions like novelty detection, replay, &amp; contextual prediction. A striking case of function emerging from stability.</p><p>📄 <a href="https://doi.org/10.1101/2025.05.28.656584" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">doi.org/10.1101/2025.05.28.656</span><span class="invisible">584</span></a></p><p><a href="https://sigmoid.social/tags/Neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Neuroscience</span></a> <a href="https://sigmoid.social/tags/Plasticity" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Plasticity</span></a> <a href="https://sigmoid.social/tags/ComputationalNeuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ComputationalNeuroscience</span></a> <a href="https://sigmoid.social/tags/CompNeuro" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CompNeuro</span></a> <a href="https://sigmoid.social/tags/SNN" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SNN</span></a> <a href="https://sigmoid.social/tags/SpikingNeurons" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SpikingNeurons</span></a></p>
INCF<p>📢 Late-breaking poster call!<br>Submit your abstract for CNS*2025 in Florence, Italy, July 5–9 <br>Poster-only presentations | Deadline: June 8<br><a href="https://neuromatch.social/tags/compneuro" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>compneuro</span></a> <a href="https://neuromatch.social/tags/CNS2025" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CNS2025</span></a> 🧪🧠🖼️</p>
Fabrizio Musacchio<p>🧠 The <a href="https://sigmoid.social/tags/Italian" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Italian</span></a> Network of <a href="https://sigmoid.social/tags/ComputationalNeuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ComputationalNeuroscience</span></a> announced its 2025 conference:</p><p>📍 Palazzo della Salute, Padova, Italy 🇮🇹 <br>📅 September 22–24, 2025<br>⏰ Submission deadline: June 7, 2025<br>🌍 <a href="https://www.incn.it/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="">incn.it/</span><span class="invisible"></span></a></p><p>A 3-day deep dive into the brain — from models to data, theory to technology.<br><a href="https://sigmoid.social/tags/CompNeuro" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CompNeuro</span></a> <a href="https://sigmoid.social/tags/Neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Neuroscience</span></a></p>
INCF<p>📢 Late-breaking poster call!<br>Submit your abstract for CNS*2025 in Florence, Italy, July 5–9 <br>Poster-only presentations | Deadline: June 8<br><a href="https://neuromatch.social/tags/compneuro" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>compneuro</span></a> <a href="https://neuromatch.social/tags/CNS2025" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CNS2025</span></a> 🧪🧠🖼️</p>
Dan Goodman<p>How do babies and blind people learn to localise sound without labelled data? We propose that innate mechanisms can provide coarse-grained error signals to boostrap learning.</p><p>New preprint from <span class="h-card" translate="no"><a href="https://mastodon.social/@yang_chu" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>yang_chu</span></a></span>. </p><p><a href="https://arxiv.org/abs/2001.10605" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">arxiv.org/abs/2001.10605</span><span class="invisible"></span></a></p><p>Thread below 👇</p><p><a href="https://neuromatch.social/tags/neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>neuroscience</span></a> <a href="https://neuromatch.social/tags/computationalneuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>computationalneuroscience</span></a> <a href="https://neuromatch.social/tags/compneuro" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>compneuro</span></a> <a href="https://neuromatch.social/tags/compneurosci" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>compneurosci</span></a></p>
Dan Goodman<p>Preview of the talk I'm giving on Friday. <a href="https://neuromatch.social/tags/neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>neuroscience</span></a> <a href="https://neuromatch.social/tags/CompNeuro" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CompNeuro</span></a> <a href="https://neuromatch.social/tags/ComputationalNeuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ComputationalNeuroscience</span></a></p>
Dan Goodman<p>Low stakes pet peeve of the day: spiking neural network people stop saying SNNs are the third generation of ANNs. They predate them! <a href="https://neuromatch.social/tags/compneuro" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>compneuro</span></a></p>
Dan Goodman<p>I'm giving an online talk starting in 15m (as part of UCL's NeuroAI series).</p><p>It's on neural architectures and our current line of research trying to figure out what they might be good for (including some philosophy: what might an answer to this question even look like?).</p><p>Sign up (free) at this link to get the zoom link:</p><p><a href="https://www.eventbrite.co.uk/e/ucl-neuroai-talk-series-tickets-1189972031379?utm-campaign=social&amp;utm-content=attendeeshare&amp;utm-medium=discovery&amp;utm-term=listing&amp;utm-source=cp&amp;aff=ebdsshcopyurl" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">eventbrite.co.uk/e/ucl-neuroai</span><span class="invisible">-talk-series-tickets-1189972031379?utm-campaign=social&amp;utm-content=attendeeshare&amp;utm-medium=discovery&amp;utm-term=listing&amp;utm-source=cp&amp;aff=ebdsshcopyurl</span></a></p><p><a href="https://neuromatch.social/tags/neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>neuroscience</span></a> <a href="https://neuromatch.social/tags/compneuro" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>compneuro</span></a> <a href="https://neuromatch.social/tags/computationalneuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>computationalneuroscience</span></a> <a href="https://neuromatch.social/tags/neuroai" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>neuroai</span></a></p>
Dan Goodman<p>Come along to my (free, online) UCL NeuroAI talk next week on neural architectures. What are they good for? All will finally be revealed and you'll never have to think about that question again afterwards. Yep. Definitely that.</p><p>🗓️ Wed 12 Feb 2025 <br>⏰ 2-3pm GMT<br>ℹ️ Details and registration: <a href="https://www.eventbrite.co.uk/e/ucl-neuroai-talk-series-tickets-1216638381149" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">eventbrite.co.uk/e/ucl-neuroai</span><span class="invisible">-talk-series-tickets-1216638381149</span></a></p><p><a href="https://neuromatch.social/tags/neuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>neuroscience</span></a> <a href="https://neuromatch.social/tags/CompNeuro" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CompNeuro</span></a> <a href="https://neuromatch.social/tags/ComputationalNeuroscience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ComputationalNeuroscience</span></a> <a href="https://neuromatch.social/tags/NeuroAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NeuroAI</span></a></p>