My theory about black holes :)

Shut’up. I know, ‘am no physicist. And no scientist for that matter. That’s fine. I just had an idea and is likely to be wrong but it makes my brain giggle with curiosity.

Read the post. I just solved the black holes and dark matter mystery. hahaha #tromlive

www.tiotrom.com/2021/11/my-the…
My theory about black holes :)

@tio
AFAIK, the mass of a black hole is concentrated on a point called the singularity, this is the reason for its extreme gravitational pull. So for black holes to behave the way it does, it needs a singularity. Are you suggesting that this singularity is made of dark matter ?

How does this dark matter singularity become that foggy patches shown in the NASA Hubble map ? To me, this doesn't seem to solve dark matter but just complicates things even more, lol 😂

@futureisfoss Ah you mean "At the center of a black hole, as described by general relativity, may lie a gravitational singularity, a region where the spacetime curvature becomes infinite.". that's just a "may". :) So may-be they are wrong, or maybe the describe it weirdly. Or maybe it is but us still made out of dark matter :). Why is my theory making things more confusing if at the center of a black ball is such an immense gravitational pull that they call it a "singularity" point? :)

@tio
AFAIK, general theory of relatively is proven. I don't know if singularity makes space-time curvature infinitive, that's kinda confusing because infinity a theoretical. For example, we consider sun's rays as parallel even though its not at an infinite distance from earth, so the context matters.

@tio
Because I don't know the mathematics behind all this, I'm not sure which infinity they meant. Its possible that they meant the true theoretical infinity. I've heard the quote "black holes are where god divided by zero", so there's definitely some weird mathematics going on. I think Hawking radiation disproved that statement, IDK 🤔. Its been a while since I last heard about black holes, haha. Anyway, these things are weird AF, they're too dense for us to grasp ;)

@tio
> Why is my theory making things more confusing

Singularity is more like a point, so calling it a "ball" is kinda misleading. Also, there's a lot of unknowns about dark matter, you're just making a lot of assumptions here, that stars convert matter to dark matter when they explode, that black holes convert matter to dark matter when it swallows something, etc. There's no need to make it this complicated when you can explain everything using a singularity made of normal matter, not dark.

@futureisfoss To me makes more sense than a "hole" in the universe :D. wtf is a hole haha. Things "get in" but where do they go? These "holes" radiate and have a mass....they have other objects orbiting around them....they can collide with other "holes" and create bigger holes. Seems more weird to me than these are just another type of star, a black star with a gravitational pull so huge that even light can't escape.

@tio
Its not actually a hole, you know that right. It just pulls everything in to the singularity, that's just an extremely powerful gravity. And for where does this matter go, there are theories saying its like wormhole, so it spews everything it swallows somewhere else. There's also Hawking radiation, which is more widely accepted I think. It solves this information paradox, because it shows that black holes radiate away.

@futureisfoss Well they call it a hole...I know is not like a normal hole. But as far as I understand it doesn't spew what it swallows somewhere else since you can see it growing and account for the stuff it swallows. The Hawking radiation is simply a proof that they also lose "stuff". Stuff gets out. And probably that's normal matter since we can "see" it.

"It just pulls everything in to the singularity" - so you're saying it pulls stuff into that "point"? Then why are these black holes bigger, smaller, have a shape, a mass? I don't get it :D

@tio
"It just pulls everything in to the singularity" - so you're saying it pulls stuff into that "point"? Then why are these black holes bigger, smaller, have a shape, a mass?

I'm no expert, but from what I understand, what they mean by the size is the event horizon. The event horizon is a boundary inside which light can no longer escape. So intuitively, this event horizon should expand when the mass increases because gravity increases with mass.

@tio
BTW, from what I know about black holes, they don't have a shape. I've heard about spinning black holes, but never a cube/pyramid shaped one 😁

@futureisfoss Well we can't observer them, remember!? But we can observe the outer side of them when they have lunch, and we for sure see a disk-like shape. Which can, in fact be spherical.

@tio
Oh yeah, the singularity might be of any shape, we don't really know much about the inside, everything after the event horizon is just black

Most black holes I've seen in pictures and stuff have a spherical event horizon, and I think the disk you're mentioning is things orbiting these black holes that glow because of their heat, that video explained it. If the event horizon is spherical, the stuff inside should be spherical too right ? I don't know enough about gravitational fields to know

@tio
That disk shape could also be something called "gravitational lensing" which happens around the event horizon. Its kinda weird TBH, crazy things start to happen when the gravitational pull is so high !

@futureisfoss Thanks for engaging I learned more things because of that. I wsn't aware that they are saying that a black hole is a black nothing but its mass is in a very dense center thats super small. I had the wrong impression that the black hole is the entire black thing. Maybe that's what made me think about it being a black ball. These two videos explain it well:

ytb.trom.tf/watch?v=poE8CuucCE…
ytb.trom.tf/embed/0sr1Xeocuuc

Although I will have to update my theory ( :)) ) it still may be wrong the way they are theorizing about it now. Maybe there's still a black ball instead of a black hole, and it is made of a different type of matter, maybe even dark matter.

You did great at explaining this, and I am very happy you have engaged in such a discussion :).

@tio
Those 2 videos are very good 👍

My confusion regarding this black balls theory is this:

1. Not even light can escape a black hole because its so dense that the gravity is in the extremes. But if it was a ball the same size (of event horizon), then it wouldn't be this dense and wouldn't have that much gravity

2. We don't even know if matter can become dark matter, let alone say that stars exploding will cause it. Its called dark matter cause we literally know nothing about it, lol 😂

@futureisfoss

Not even light can escape a black hole because its so dense that the gravity is in the extremes. But if it was a ball the same size (of event horizon), then it wouldn't be this dense and wouldn't have that much gravity

Actually the one who first came up with this theory, a mathematician some 200 years ago, called it a dark/black star and proved mathematically you can have such a star where light can't escape it because it is so dense. And black holes are actually stars....same way a neutron star is still a star. They call it "hole" and make things confusing a lot :D.

We don't even know if matter can become dark matter, let alone say that stars exploding will cause it. Its called dark matter cause we literally know nothing about it, lol

Exactly. We don't even know if it is matter. But has similar properties with a black hole that's why they are thinking black matter can in fact be black holes. They both do not interact with light/matter so that we can't see them, and have a strong gravitational pull.

@tio

> Actually the one who first came up with this theory, a mathematician some 200 years ago, called it a dark/black star and proved mathematically you can have such a star

I didn't knew about that, interesting... 🤔
Also, keep in mind that this mathematician can be wrong, there has to be a reason we don't call it a star anymore. Einstein published general relativity in 1915, before that we didn't had a clear picture of how gravity worked.

@tio
Its possible for a star's gravity to bend light, this is actually how we proved general relativity. But a star's gravity is not strong enough that even light can't escape, if it were then it wouldn't be able to glow ;)

Also, when you call it a black ball, a dark planet comes to my mind. And I don't get how a planet can do what a black hole does. Even if your black ball was made of dark matter, the gravitational properties would be kinda the same as a normal ball.

@futureisfoss A "black hole" is a star. It is a collapsed star, same as a neutron star. So we can better call it a "dark star" or something like that. Now the properties of this dark star can be that its size are immensely small and dense, like the singularity of a black hole. Semantics. A dark star, or black ball like I call it, can be so dense that light can't even escape it. Why can't it be? Or can be that is made out of dark matter and combined with gravity it sucks in normal matter and converts it into dark matter.

A star doesn't have to glow. White dwarfs barely glow.

Take normal matter. A neutron star then the Venus planet. Both made out of normal matter. But the neutron star's gravitational pull is immense compared to the one of the planet Venus. Despite them being made out of the same matter. Why can't it be that dark matter that we observe scattered around the universe clump under tremendous pressures into a ball just like a neutron star, and have immense gravitational pull? :P

@tio
As long as we're talking about the singularity, the name we give to it doesn't matter. In my mind, I see stars as something that radiates energy, so its hard to call black holes a star. I know about hawking radiation, but its very different thing. In hawking radiation, none of the energy/matter that's released comes from the black hole itself.

From wikipedia: "A star is an astronomical object consisting of a luminous spheroid of plasma held together by its own gravity"

@tio
Its also hard for me to call singularity a "ball" because now I have a better understanding of why they theorized it to be point sized. Even if it wasn't point sized, I still find it hard to call something so tiny a "ball". Would you call atoms a "ball" ? IDK, sounds weird to me.

@futureisfoss Atoms are different. We are talking here about a collapsed star, not atoms. But a group of atoms or some new kind of particles. A group of.
Follow

@tio
Atoms are spherical shaped and are made of even smaller sub particles, so its not that different from a star/planet (which is made of many small particles as well), atoms are just tiny.

I think of singularity as a point, its more exciting for me that way ;)

And considering how little we know about the universe, maybe the closest we can get to truth is to consider the latest science we know. Ofc, it can always be wrong, but that's just the best we can know from a scientific perspective 🙂

@futureisfoss Yes but as far as I know sub atomic particles do not "obey" the laws of physics. They had to come up with quantum physics to explain them. A star is different, on a different level. I get your point, but an atom is not a "point" either. And is not round either, of course. It is a wobbly thing with clouds of electrons around them, and a core made out of protons and neutrons.

@tio
Yeah, I was just trying to say how I can't call something so tiny like singularity a ball. Ofc, it'd be different if your theory is right and is actually a star/planet, then we can call it a ball. This is why I said we have different POV when we think about a black hole, the singularity comes to my mind but maybe a ball made of dark matter comes to your mind 🙂

Sign in to participate in the conversation
Fosstodon

Fosstodon is an English speaking Mastodon instance that is open to anyone who is interested in technology; particularly free & open source software.