My theory about black holes :)

Shut’up. I know, ‘am no physicist. And no scientist for that matter. That’s fine. I just had an idea and is likely to be wrong but it makes my brain giggle with curiosity.

Read the post. I just solved the black holes and dark matter mystery. hahaha #tromlive

www.tiotrom.com/2021/11/my-the…
My theory about black holes :)

@tio
AFAIK, the mass of a black hole is concentrated on a point called the singularity, this is the reason for its extreme gravitational pull. So for black holes to behave the way it does, it needs a singularity. Are you suggesting that this singularity is made of dark matter ?

How does this dark matter singularity become that foggy patches shown in the NASA Hubble map ? To me, this doesn't seem to solve dark matter but just complicates things even more, lol 😂

@futureisfoss Ah you mean "At the center of a black hole, as described by general relativity, may lie a gravitational singularity, a region where the spacetime curvature becomes infinite.". that's just a "may". :) So may-be they are wrong, or maybe the describe it weirdly. Or maybe it is but us still made out of dark matter :). Why is my theory making things more confusing if at the center of a black ball is such an immense gravitational pull that they call it a "singularity" point? :)

@tio
AFAIK, general theory of relatively is proven. I don't know if singularity makes space-time curvature infinitive, that's kinda confusing because infinity a theoretical. For example, we consider sun's rays as parallel even though its not at an infinite distance from earth, so the context matters.

@tio
Because I don't know the mathematics behind all this, I'm not sure which infinity they meant. Its possible that they meant the true theoretical infinity. I've heard the quote "black holes are where god divided by zero", so there's definitely some weird mathematics going on. I think Hawking radiation disproved that statement, IDK 🤔. Its been a while since I last heard about black holes, haha. Anyway, these things are weird AF, they're too dense for us to grasp ;)

@tio
> Why is my theory making things more confusing

Singularity is more like a point, so calling it a "ball" is kinda misleading. Also, there's a lot of unknowns about dark matter, you're just making a lot of assumptions here, that stars convert matter to dark matter when they explode, that black holes convert matter to dark matter when it swallows something, etc. There's no need to make it this complicated when you can explain everything using a singularity made of normal matter, not dark.

@futureisfoss To me makes more sense than a "hole" in the universe :D. wtf is a hole haha. Things "get in" but where do they go? These "holes" radiate and have a mass....they have other objects orbiting around them....they can collide with other "holes" and create bigger holes. Seems more weird to me than these are just another type of star, a black star with a gravitational pull so huge that even light can't escape.

@tio
Its not actually a hole, you know that right. It just pulls everything in to the singularity, that's just an extremely powerful gravity. And for where does this matter go, there are theories saying its like wormhole, so it spews everything it swallows somewhere else. There's also Hawking radiation, which is more widely accepted I think. It solves this information paradox, because it shows that black holes radiate away.

@futureisfoss Well they call it a hole...I know is not like a normal hole. But as far as I understand it doesn't spew what it swallows somewhere else since you can see it growing and account for the stuff it swallows. The Hawking radiation is simply a proof that they also lose "stuff". Stuff gets out. And probably that's normal matter since we can "see" it.

"It just pulls everything in to the singularity" - so you're saying it pulls stuff into that "point"? Then why are these black holes bigger, smaller, have a shape, a mass? I don't get it :D

@tio
"It just pulls everything in to the singularity" - so you're saying it pulls stuff into that "point"? Then why are these black holes bigger, smaller, have a shape, a mass?

I'm no expert, but from what I understand, what they mean by the size is the event horizon. The event horizon is a boundary inside which light can no longer escape. So intuitively, this event horizon should expand when the mass increases because gravity increases with mass.

@tio
BTW, from what I know about black holes, they don't have a shape. I've heard about spinning black holes, but never a cube/pyramid shaped one 😁

@futureisfoss Well we can't observer them, remember!? But we can observe the outer side of them when they have lunch, and we for sure see a disk-like shape. Which can, in fact be spherical.

@tio
Oh yeah, the singularity might be of any shape, we don't really know much about the inside, everything after the event horizon is just black

Most black holes I've seen in pictures and stuff have a spherical event horizon, and I think the disk you're mentioning is things orbiting these black holes that glow because of their heat, that video explained it. If the event horizon is spherical, the stuff inside should be spherical too right ? I don't know enough about gravitational fields to know

@futureisfoss

Oh yeah, the singularity might be of any shape, we don't really know much about the inside, everything after the event horizon is just black

Could also be that there is no such thing as singularity...

If the event horizon is spherical, the stuff inside should be spherical too right ?

Sounds right to me but how can we know :D. If I think about my black ball theory then yes haha.

@tio
> Could also be that there is no such thing as singularity...

Could be, but the mass of the black hole still has to exist somewhere inside the event horizon. The idea of a singularity is probably used to explain the extreme gravitational pull, maybe it'll have less space-time curvature if the mass is spread around VS on a densely packed point. So more space-time curvature means more gravity. I'm still not sure how scientifically proven this singularity thing is, this is my understanding.

@futureisfoss Isn't a star that's 1km in diameter and has 1 tonne mass, having the same gravitational pull of a star that's 10km in size and still 1 tonne?

@tio
Yeah you're right, the gravitational pull will only differ with mass and distance, I was thinking of the spacetime curvature analogy.

Follow

@tio
But if you think about it, size does make a difference. If you're falling into a 10km size star with 1 tonne mass, you'll experience the same gravitational pull as a 1km size star with the same mass. But remember, gravity increases when distance between you and the star reduces, so you'll keep on accelerating as you move closer to the star. So on a 10km size star, the closest you can get to it is 5km (its radius). But on a 1km size star, you can go up to 0.5km where gravity is stronger 🙂

Sign in to participate in the conversation
Fosstodon

Fosstodon is an English speaking Mastodon instance that is open to anyone who is interested in technology; particularly free & open source software.